The surveillance programme for *Echinococcus multilocularis* in red foxes (*Vulpes Vulpes*) in Norway 2016
The surveillance programme for *Echinococcus multilocularis* in red foxes (*Vulpes vulpes*) in Norway 2016

Content

Summary .. 3
Introduction .. 3
Aims .. 3
Materials and methods ... 3
Results and Discussion .. 4
References ... 6

Authors

Knut Madslien, Charles Albin-Amiot, Malin E Jonsson, Torill Clausen, Kristin Henriksen, Inger Sofie Hamnes, Anne Margrete Urdahl, Berit Tafjord Heier, Heidi L. Enemark

ISSN 1894-5678

© Norwegian Veterinary Institute 2017
Summary

Echinococcus multilocularis was not detected in any of the 575 red foxes (_Vulpes vulpes_) examined during the licensed hunting season in 2016.

Introduction

The dwarf fox tapeworm _Echinococcus multilocularis_ is endemic in large parts of the northern hemisphere, including eastern and central parts of Europe (1, 2). During the past decades, prevalence of _E. multilocularis_ in Europe has increased in the known endemic areas (3), and the geographic distribution has expanded to regions where the parasite was not previously detected (4). In 1999, _E. multilocularis_ was detected for the first time in Denmark (5) and on the high-arctic Norwegian islands of Svalbard (6). Yet, prior to the detection of _E. multilocularis_ in Sweden in February 2011 (7) there was no evidence of its presence in mainland Fennoscandia (8). Despite analyses for _E. multilocularis_ of more than 5 000 foxes/fox scats since 2002 (9), the parasite has not been detected in mainland Norway so far.

Anthelmintic treatment of dogs, prior to import, is compulsory to prevent introduction of the parasite from endemic EU regions. However, according to the EU Directive 998/2003/EC on pet movement, the maintenance of this national regulation post 2008 requires documentation of an _E. multilocularis_-free status within Norway.

Aims

The aim of the programme is to document freedom of _E. multilocularis_ in mainland Norway.

Materials and methods

Faecal samples collected from red foxes shot during the licensed hunting season in 2016 (i.e. January to mid-April and mid-July to late December) were included in the surveillance 2016.

All counties in Norway were represented in the sampling regime. Hunters who have provided samples previous years were invited to participate and additional hunters were recruited via our homepage. A standard form including information on where and when the fox was hunted, sex (male or female) and estimated age of the animal (juvenile or adult), was completed by each hunter.

In addition, faecal samples from wolves (_Canis lupus_) killed legally or illegally during 2016 were included in the 2016 surveillance.

The DNA-fishing method combined with realtime PCR detection, was used for the detection of _E. multilocularis_ in the faecal samples. This involves magnetic capture DNA extraction from samples by applying specific DNA-hybridisation, followed by extraction using streptavidin coated magnetic beads and finally detection by realtime PCR (10, 11). The DNA-fishing method is capable of detecting _E. multilocularis_ DNA from adult worms as well as eggs. These methods are targeted for use during the patent phase of the infection when DNA from the eggs is shed in the faeces. This period constitutes roughly two-thirds of the entire infection period. The combination of these methods is more sensitive than the previously used method: egg isolation by sieving followed by detection of parasite DNA using a multiplex PCR (10, 11). Validation of the current methods in our laboratory has demonstrated a sensitivity around 1 egg per 3 g of faeces (Heidi Enemark, personal communication).

A total of 575 samples were analysed individually (3 g faeces per sample). Realtime PCR detection was performed in duplicate. We assumed a test sensitivity of 63 % (10) and a fox population of 151.000 (Olav Hjeljord, Norwegian University of Life Sciences, personal communication). However, the true test sensitivity is probably higher and most likely close to the Swedish method (88% test sensitivity) (10,
12). The apparent prevalence and corresponding confidence interval were estimated using the function epi.prev in package epiR performed in R version 2.6.2 (13). The conservative 63% sensitivity and a specificity of 1 were used for calculating the apparent prevalence.

Results and Discussion

Approximately 600 samples were collected in 2016 of which 575 were suitable for examination (Figure 1, Table 1). In addition, 8 samples from wolves (Canis lupus) were analysed. All samples were negative for *E. multilocularis* giving an estimated apparent prevalence of 0% (0 - 0.7%, 95% confidence interval).

![Figure 1. Map of Norway showing numbers and hunting municipality of red foxes sampled and examined for Echinococcus multilocularis during the red fox licensed hunting period in 2016](image-url)
Table 1. Number and county of red foxes and wolves sampled and examined for *Echinococcus multilocularis* in Norway during the red fox licensed hunting season in 2016 (January to mid-April and mid-July to late December) and corresponding numbers for the period 2002 - 2016.

<table>
<thead>
<tr>
<th>County</th>
<th>Number of red foxes tested 2016</th>
<th>Other species tested 2016</th>
<th>Total 2002-2016</th>
<th>Other species tested 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Østfold</td>
<td>101</td>
<td></td>
<td>629</td>
<td></td>
</tr>
<tr>
<td>Akershus</td>
<td>48</td>
<td></td>
<td>579</td>
<td></td>
</tr>
<tr>
<td>Oslo</td>
<td>36</td>
<td></td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Hedmark</td>
<td>87</td>
<td>4 wolves</td>
<td>830</td>
<td></td>
</tr>
<tr>
<td>Oppland</td>
<td>38</td>
<td>2 wolves</td>
<td>343</td>
<td></td>
</tr>
<tr>
<td>Buskerud</td>
<td>38</td>
<td></td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>Vestfold</td>
<td>11</td>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Telemark</td>
<td>23</td>
<td></td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>Aust-Agder</td>
<td>5</td>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Vest-Agder</td>
<td>1</td>
<td>1 wolf</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Rogaland</td>
<td>3</td>
<td></td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Hordaland</td>
<td>34</td>
<td></td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Sogn og Fjordane</td>
<td>12</td>
<td></td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Møre og Romsdal</td>
<td>6</td>
<td></td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Sør-Trøndelag</td>
<td>17</td>
<td>1 wolf</td>
<td>366</td>
<td></td>
</tr>
<tr>
<td>Nord-Trøndelag</td>
<td>39</td>
<td></td>
<td>358</td>
<td></td>
</tr>
<tr>
<td>Nordland</td>
<td>21</td>
<td></td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Troms</td>
<td>54</td>
<td></td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>Finnmark</td>
<td>1</td>
<td></td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>575</td>
<td></td>
<td>5 037</td>
<td>8 wolves</td>
</tr>
</tbody>
</table>

No faecal samples collected from Norwegian foxes in 2016 as part of the surveillance programme were positive by PCR for *E. multilocularis*, which is in agreement with results from previous years. According to requirements of Regulation (EU) No 1152/2011, Annex II, the pathogen-specific surveillance programme must be designed to detect a prevalence of ≤ 1% at confidence level of at least 95%.

The number of samples collected in Norway in 2016 was sufficient to document a current prevalence of *E. multilocularis* below 1%. However, increasing prevalence in nearby regions has increased the risk of introduction of the parasite to Norway. In Sweden, *E. multilocularis* has now been found in four different regions (9), and surveillance in Denmark has recently demonstrated its prevalence in a new region in Denmark (14). Furthermore, studies have shown the parasite to be wider distributed in the Baltics than previously anticipated leading to increasing numbers of alveolar echinococcosis in humans (15).

This is worrisome since Norwegian studies have exposed lack of compliance with the anthelmintic treatment requirements for pets entering the country after having visited endemic areas (16, 17). Consequently, an annual surveillance programme is necessary to document a continuous disease free status. Our findings support the maintenance of the national regulation for compulsory anthelmintic treatment of imported dogs to minimise the risk of *E. multilocularis* introduction to Norway.
References

The Norwegian Veterinary Institute is a national research institute that operates in the fields of animal and fish health, food safety and feed hygiene; its primary task is to provide the authorities with independently generated knowledge.

Emergency preparedness, diagnostic services, monitoring, reference functions, consulting, and risk assessments are all important areas of activity. Our products and services include research results and reports, analyses and diagnoses, studies and advice.

The Norwegian Veterinary Institute’s central laboratory and administration lie in Oslo, and we operate regional laboratories in Sandnes, Bergen, Trondheim, Harstad and Tromsø.

The Norwegian Veterinary Institute collaborates with a large number of national and international institutions.