

UNIVERSITY OF BERGEN

New objective method for mucosal epithelia measures applied to gills

Mucosal Mapping

Karin Pittman* Aurora Campo 1 Elizabeth Sweetman 1 Johan Johansen 2 Stine Karlsen 3 Philippe Sourd 4 Bjarne Ravnøy 5

*BIO, UiB, Bergen; 1 Quantidoc AS, Bergen; 2 Gildeskål Forskningsstasjon, Inndyr; 3 Inst of Marine Research, Bergen; 4 Aquativ France; 5 Produs Aqua, Norway

Co-conspirators

- John Sweetman, Alltech Aqua
- Sulefisk A/S
- Ingrid Uglenes, Havforskningsinst
- Tine Oen, BIO UiB/Fiskeridirektoratet
- Amanda Pittman, UiB/U Copenhagen
- Kirsten Redmond, BIO UiB/UiStavanger
- Stine Karlson, BIO, UiB/Havforskningsinst

MUCOSAL EPITHELIUM = SKIN, GILLS, GUTS = BARRIER FUNCTIONS

Redrawn from Segner et al 2012 Fish Physiol Biochem (2012) 38:85–105

Table 1 Site selection of parasites in the total fish population [Gyrodactylus derjavini week 1 and week 6 post-infection, surface area of different body parts (mean of ten fish), mucous cell density in (uninfected) rainbow trout skin and fins (ten fish examined; mean of all zones measured or mean of the zones with the lowest mucous cell density, standard deviation in parentheses)]

Microhabitat	Total number of parasites		Parasites per cm ²		Surface area per fin (cm ²)	Mucous cell density (mean number/ mm ² all zones)	Mucous cell density (mean number/mm ² , zones with lowest count)
	Week 1	Week 6	Week 1	Week 6		min , an zones)	Lones and to rear county
Caudal fin	106	852	0.58	6.98	1.14	116.7 (38.3)	86.1 (37.8)
Dorsal fin	23	66	0.66	2.80	0.22	309.8 (81.1)	300.5 (90.3)
Pectoral fin	240	241	1.71	2.56	0.88	285.1 (66.6)	249.8 (33.9)
Pelvic fin	182	208	2.03	3.47	0.56	269.3 (77.8)	259.5 (56.5)
Anal fin	84	131	1.66	3.82	0.32	217.7 (38.6)	211.5 (58.9)
Adipose fin	21	26	1.31	2.43	0.10	236.6 (58.2)	217.3 (56.9)
Corpus	64	368	0.06	0.48	7.24	273.5 (87.6)	265.5 (104.9)
Cornea	36	439	0.75	13.67	0.30	49.9 (72.7)	0 (0)

Buchmann & Bresciani (1998)

- Mucus cell density varies with location on body
- Strong negative correlation between mucus cell density and parasite density?

Mucosal mapping

Q: how do you take one (1) slice of the sky and find out how big the balloons are and how tightly packed they are?

A: Design-based stereology

Design-based stereology (Pittman Protocol)

Examples of salmon skin sections giving statistically robust objective measures of:
 i) mucous cell area ii) mucous cell density iii) area/density (tissue dynamics)
 Control Aquate SPMP

mucus cells pink – neutral mucins blue – acid mucins

scale

pigment

UNIVERSITY OF BERGEN

MUCOSAL MAPPING IN SALMONIDS

.

()

Industrial scale application of the protocol

- Sulefisk field trial on commercial farm, 4 cages with 2 control 2 Aquate-fed groups
 280 000 salmon (about 50 m tons), 4 sampling dates, 7 months duration
- 2. Gifas1 field trial on research station, 60 000 salmon, 12 cages with 3 cages for each of 4 diets (control, plus three other diets), 5 sampling dates over 4 months
- 3. Gifas2 field trial on research station, 60 000 salmon, 12 cages dose-response to 2 levels of trial diet plus control diet, 3 sampling dates over 2 months
- 4. Averøy controlled trial at Salmobreed, two specially bred families
 1 sampling date

More than

JO samples

UNIVERSITY OF BERGEN

5. Gill test - gills from GIFAS2 first date control fish plus WILD salmon gills (2013 IMR cruise)

Significantly denser mucous cells on the dorsal (p<0.05) ie. how much of the epithelia is mucus

GIFAS1: Some diets promote rapid change in area/density of mucous cells- these diets repel lice at all stages (multivariate analysis of lice abundance and treatment; F-test p=0.05)

Family does not explain lice counts, but mucosal measures do

-PCA analysis shows mucosal values are the factors most related to resistance of lice at all stages (family is, so far, irrelevant)

Averoy mucose and factors

Averoy mucose and factors

MUCOSAL MAPPING

- Resolves significant differences of as little as 7 square microns (area of *E. coli*)
- Shows how the mucosal tissue fills itself with mucous cells
- Focusses on mucous and epithelial cells
- Comparable across species, tissues, time

Gills and guts...

Mucosal Mapping in Seabass guts and skin

From: Custodio 2014; Custodio et al. in prep; n=36 Photos: S. Torrecillas

Mucosal Mapping on salmon gills and skin

highly significantly different mucous cell populations
 different control mechanisms

N= 10 salmon, 2nd gill arch

From Campo et al., submitted

* p<0.05

p<0.0001

Salmon gills and skin: trend to significant sex differences in mucosal variables

BATEMAN'S PRINCIPLE: FEMALES INVEST MORE IN IMMUNITY

From Campo et al., submitted

Mucosal Mapping of two tissues in salmon: 3 populations of mucous cells

Gills have two distinct populations, one in filament (largest size and highest density) and one in lamellae (smallest cells, medium density) Skin has medium sized mucous cells and lowest density

Table 3: General overview of the significant results and trends obtained, based in F-test.

Measure variable	Significant factor	p -value
Density	Tissue	3.56E-05***
Area	Tissue	0.00207 * *
Area	Tissue:Sex	0.05604
Area/dens	Tissue	9.78E-07***
$\rm Area/dens$	Sex	0.0887

From Campo et al., submitted

One section per fish for Mucosal Mapping: how the numbers behave

Figure 2: Mucous cell area frequency distribution in filaments, lamellae and dorsolateral skin mucosal tissue. The conversion from biased to unbiased changes completely the distribution pattern from a Poisson distribution to an approximately normal distribution. N = 728 mucous cells from 10 Atlantic salmon individuals.

Та	Table 4: Study of the error			
	Epithelium	Mucous	Area	
FILAMENT	area	number	of mucous cell	
Average	174098.007	62	204.07	
Standard deviation	31735.89	47.70	70.87	
Standard error est(SE)	10035.77	15.08	22.41	
Coefficient error $\mathrm{est}(\mathrm{CE},~\%)$	0.06	0.24	0.1098266620	
LAMELLA			_	
Average	95622.687	37.9	141.47	
Standard deviation	27730.666	11.76104	21.14	
Standard error est(SE)	8769.206	3.719169	6.68	
Coefficient error est (CE, %)	0.091706	0.098131	0.04725	
SKIN				
Average	908002.055	193.6	163.09	
Standard deviation	168279.5	47.91473	5.75	
Standard error est(SE)	53214.66	15.15197	1.8191296	
Coefficient error $est(CE, \%)$	0.058606	0.078264	0.011154	

Correction for not sectioning at equator of mucous cells = unbiased!

From Campo et al., submitted

Mucosal Mapping of wild salmon gills:

Cell area variability

Wild had shorter lamellae No mucous cells in lamellae

Work continues...!

Mucosal Mapping of salmon gills:

Biophysical model -cell size from pressure by neighbouring cells = tensile strength of barrier

Tort et al. 2002 showed that damage due to H ₂ O ₂ primarily occurred in the gills and that pathological changes can include:	ation?
oedemas,	ilahla?
lamellar fusion,	
epithelial hyperplasia as well as	
swelling and	
lifting of the gill epithelium	

Hence, a disruption of the epidermal integrity cannot be excluded and may also lead to an increased vulnerability to pathogens. (from Henriksen et al 2013)

Immune and inflammatory responses in AGD affected salmon gills and Mucosal Mapping

question	Mucosal Mapping answer
Epithelial hyperplasia	Ratio of filament:lamellar epithelia Differential diagnosis wrt mucous cell proliferation?
Early immune responses	Changes in area/density ratio of mucous cells in epithelia
Upregulation of immune cells, immune signalling (f.eks. IgT, IgM, pIgR)	Number and area/density of mucous cells or other marked cells
Therapeutic interventions	General response capacity of mucosal epithelia of gills

Conclusions:

The integrity of barrier functions of the skin, gills and guts may be indicated by mucous cell size and density in the epithelia (biophysical model)

Mucosal Mapping gives a snapshot of health which may have clinical significance In Salmon, there are two distinct populations of gill mucous cells in the filaments and the lamellae. There are trends to sex differences in the mucous cell populations of gills and of skin Gill mucous cell density is higher than skin, and cell size is smaller (higher tensile strength, faster motility) The mucosal epithelia of gills and skin are regulated differently

Small differences in all three mucosal epithelia reflect differences in the ability of the fish to maintain good health.

Site signatures The data clusters: what more can we learn?

MUCOSAL MAPPING IN SALMONIDS

Mucosal Mapping in Salmonids

Previous studies on mucous cells in salmon skin (that's it folks!)

Source	Species	Section location	Stain	Thickness	Units of report
Buchmann & Bresciani (1998)	Oncorhynchus mykiss (Freshwater stage)	Varied	Alcian Blue	?	Number per mm2
Fast et al. (2002a)	Oncorhynchus mykiss Salmo salar Oncorhynchus kisutch	Mid body	Hematoxylin & Eosin	5 µm	Number per 100 µm length Width of largest
Harris & Hunt (1975a&b)	Salmo salar Salmo trutta	Varied	Lead citrate Uranyl acetate Toluidine blue	500-600 Å 1-2 μ	Size (µ) Did not report density.
O'Byrne-Ring et al. (2003)	Salmo salar	Shoulder flank	Periodic acid- Schiff/alcian blue	5 µm	Number per mm2
Fast et al. (2002b)	Oncorhynchus mykiss Salmo salar Oncorhynchus kisutch	Mid body	Hematoxylin & Eosin	5 µm	Number per 100 µm length
Roberts & Powell (2003)	Salmo salar	Gills	Periodic acid- Schiff/alcian blue	5 µm	Number per inter- lamellar unit
Roberts et al. (1970)	Salmo salar Salmo trutta	Varied in head region	Multiple stains (LM) Reynolds' citrate stain (EM)	8 μm 600 Å	Observations
Van der Marel et al. (2010)	Cyprinus carpio	Varied	Periodic acid- Schiff/alcian blue	4 µm	Number of goblet cells per sample

Healthy mucus = Healthy skin= Healthy

fish

- The slimy skin of fish is the first line of defence against pathogens and damage
- Mucosal Mapping is the only statistically robust and objective quantification of mucous cell sizes, their density and their dynamics,
- 3 years of development and testing, 3 peer-reviewed publications
- Applied to 5 field trials of farmed Atlantic salmon, 1 of seabass
- Mucosal dynamics are significantly affected by diet, by body site, by fish size and sometimes by fish family or sex
- Useful for enhancing fish health, for interpreting molecular results, for breeding and for product development. Easy to compare between trials, species, tissues etc.
- Open for further development with new potential partners