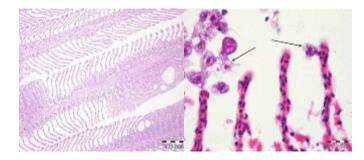
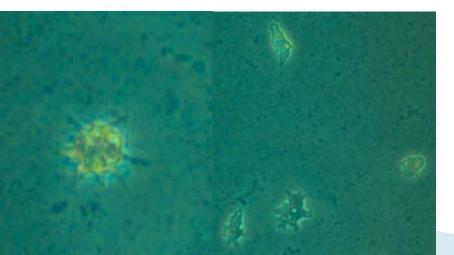
AGD in Ireland: parasite culture and field studies

Jamie Downes Marine Institute, Ireland Jamie.downes@marine.ie

Marine Institute Foras na Mara



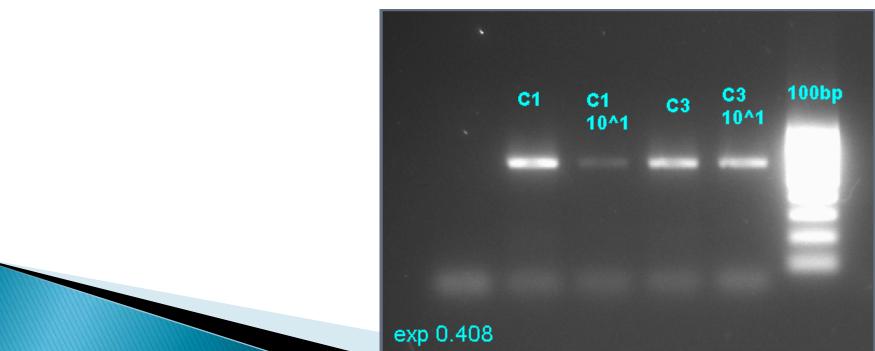
"Gill disease in Finfish aquaculture with particular emphasis on AGD"


- Marine Institute PhD Fellowship
 - Marine and Freshwater Research Centre in Galway/Mayo Institute of Technology (GMIT)
 - Vet Aqua International
- 2013 2017
- Research Objectives
 - Investigate molecular diagnostics
 - Set up amoeba culture
 - Challenge trials
 - > Field studies longitudinal studies transmission pathways, reservoirs
 - Proteomics host response

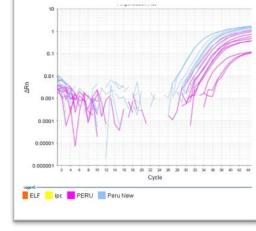
Severe hyperplasia and large vesicle formation (L) and a moeba present in histo (R) (courtesy: E. Collins)

Neoparamoeba perurans culture

- Establishment of a *N. perurans* culture in July 2013
 - Gill acquired from infected sites with gill scores of 2
 - Placed in tissue culture flasks with sterile seawater and left refrigerated over night
 - Amoeba allowed to settle on flask and removed using trypsin and washing.
 - Cultured on MYA @ 18°C
- Culture tested positive using *N. perurans* real-time PCR
- Successfully utilised in infection trials
- Further infection trails planned in the near future.

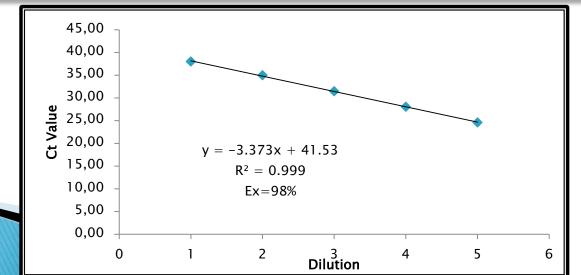


N. perurans free floating in culture (L) and attached to M/Y agar (R)


N. Perurans culture-PCR

- ▶ 636 bp sequence of the 18s rRNA gene (Young *et al.* 2008)
- Two extractions of the culture were tested
- Culture sequence shows 99% similarity with sequences from Norway (KF146713), Australia (GU574794) and Chile (GQ407108)

Molecular Diagnostics



- Two published Real-Time PCR methods Bridle *et al.* 2010 (SYBR Green) and Fringuelli *et al* 2012 (TaqMan).
- Fringuelli method based on FFPE samples and transition to testing field samples was not established.
- Alternative real-time assay developed, based on the 18S rRNA gene.

Amplification efficiency

- A key attribute of any real-time PCR reaction is the amplification efficiency of the PCR
 - There should be a doubling of PCR product in every cycle
- Accepted efficiency is 100 +/- 10% (TaqMan[®])
- Amplification efficiency of the Real-Time PCR assay was established using the Ct slope method (Efficiency (Ex) = [10(-1/slope)]-1)
- New method has an amplification efficiency of 98%

	1 st Run		2nd Run		3rd Run		Mean	Stdev
10-5	37.64	38.02	38.17	38.08	38.04	38.07	38.00	0.19
10-4	34.93	35	35.21	35.04	34.78	34.88	34.97	0.15
10-3	31.55	31.53	31.60	31.58	31.27	31.27	31.47	0.15
10-2	27.98	27.97	28.08	28.08	28.11	27.96	28.03	0.07
10-1	24.49	24.59	24.55	24.66	24.73	24.63	24.61	0.08

Specificity

- Primers and probes were tested via theoretical means by Blast (Basic Local Alignment Search Tool) searches in order to identify similar sequences in the nucleotide database
- ▶ Did not cross react with *N. pemaquidensis* (ATCC[®] 50172[™])
- Plan to test other Neoparamoeba sp. if available

Sensitivity

- Cultured amoeba were tested in order to determine the LOD
 - Results from samples tested during analysis for the standard curve were used
 - The final dilution that produced all replicates positive prior to the signal drop off point was selected for further LOD identification
 - A C_t value of 40.72 was established as the working LOD for this assay.

Repeatability

- Naturally infected gills were used in order to examine the repeatability of the entire assay from extraction to PCR
- 10 samples of gill tissue from samples that have previously tested positive were pooled to ensure same amount of target analyte and matrix and taken through extraction process.
- The repeatability was carried out at two further concentrations by creating dilutions of 10⁻¹ and 10⁻²

Neat	Ct 1	Ct 2	Ct Mean	Ct Stdev	10-1	Ct 1	Ct 2	Ct Mean	Ct Stdev	10 ⁻²	Ct 1	Ct 2	Ct Mean	Ct Stdev
1	29.93	29.92	29.93	0.01		33.04	33.3	33.17	0.18		35.94	35.97	35.96	0.02
2	29.97	30	29.99	0.02		32.11	32.3	32.21	0.13		36.2	36.29	36.25	0.06
3	30.06	30.09	30.08	0.02		32.93	32.85	32.89	0.06		36.32	36.35	36.34	0.02
4	30.45	30.55	30.5	0.07		32.79	32.73	32.76	0.04		36.07	36.53	36.3	0.33
5	30.66	30.66	30.66	0		32.57	32.75	32.66	0.13		35.77	35.51	35.64	0.18
6	29.94	29.94	29.94	0		32.25	32.17	32.21	0.06		36.94	36.37	36.66	0.4
7	29.94	29.91	29.93	0.02		33.41	33.63	33.52	0.16		36.93	36.82	36.88	0.08
8	30.04	30.07	30.06	0.02		32.69	32.82	32.76	0.09		35.87	36.5	36.19	0.45
9	30.11	30.07	30.09	0.03		32.05	32.19	32.12	0.1		35.48	35.16	35.32	0.23
10	29.91	29.94	29.93	0.02		32.3	32.34	32.32	0.03		35.88	35.9	35.89	0.01
			0.26	0.02				0.46	0.1				0.46	0.18

Molecular Results of Infection Trial

 Overall lower Ct values with new method and increased ability to detect low positive samples

Fish	Tank	Infected Y/N	Date	Days p.i	Tank gill score	AGD lesion Y/N	MI PCR	Fringueilli <i>et al</i> (2012)							
1	1	Y			0	N	Neg	Neg							
2	2	Y			0	N	37.56	Neg							
3	3	Y			0	N	35.67	39.95							
4	4	Y	11.03.14	7	0	Ν	Neg	Neg							
5	5	Y			0	N	Neg	Neg							
6	6	Y			0	N	Neg	Neg							
7	7	Ν			0	N	Neg	Neg							
8	1	Y			0	N	Neg	Neg							
9	2	Y			0	N	32.72	37.54							
10	3	Y			0	N	32.72	39.16							
11	4	Y	18.03.14	18.03.14	18.03.14	18.03.14	18.03.14 14	18.03.14	3.14 14	0	N	Neg	Neg		
12	5	Y										0	N	Neg	Neg
13	6	Y										0	N	32.88	37.24
14	7	N			0	N	Neg	Neg							
15	1	Y			0.6	Y	29.26	32.58							
16	2	Y				0.9	Y	31.21	34.50						
17	3	Y		23	0.6	Y	37.05	40.69							
18	4	Y	27.03.2014		0.4	Y	29.2	32.19							
19	5	Y			0.75	N	36.61	Neg							
20	6	Y				0.8	Y	33.30	37.52						
21	7	Ν			0	Ν	Neg	Neg							

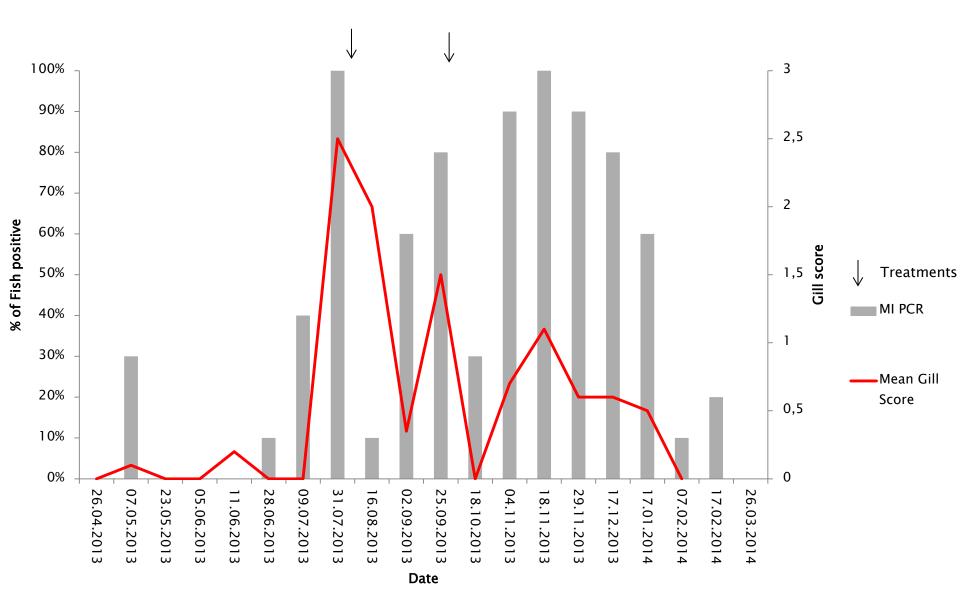
Molecular Results of Infection Trial

 Overall lower Ct values with new method and increased ability to detect low positive samples

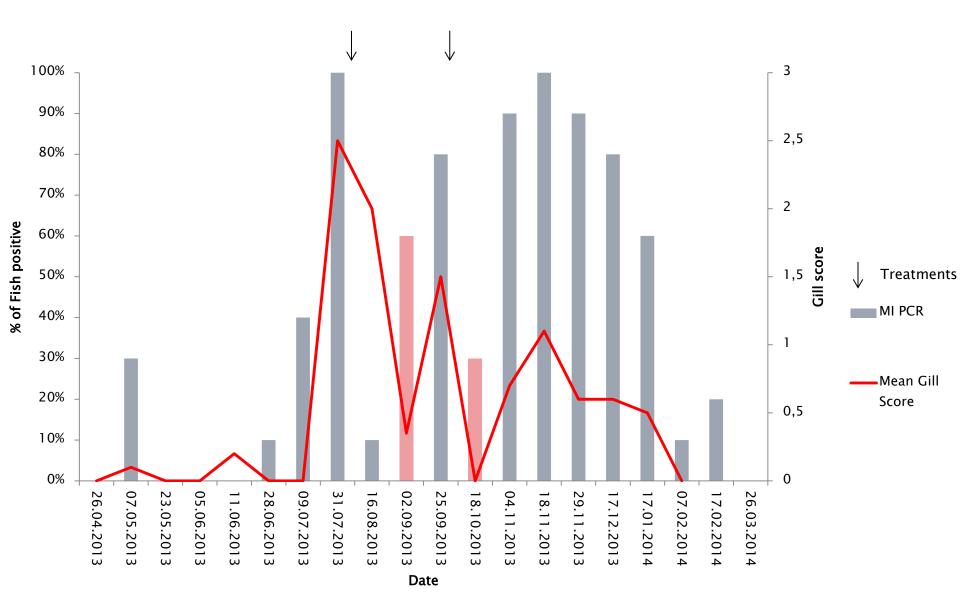
Fish	Tank	Infected Y/N	Date	Days p.i	Tank gill score	AGD lesion Y/N	MI PCR	Fringueilli <i>et al</i> (2012)				
1	1	Y			0	N	Neg	Neg				
2	2	Y			0	N	37.56	Neg				
3	3	Y			0	Ν	35.67	39.95				
4	4	Y	11.03.14	7	0	Ν	Neg	Neg				
5	5	Y			0	N	Neg	Neg				
6	6	Y			0	N	Neg	Neg				
7	7	N			0	N	Neg	Neg				
8	1	Y		14	0	N	Neg	Neg				
9	2	Y			0	N	32.72	37.54				
10	3	Y			0	N	32.72	39.16				
11	4	Y	18.03.14		0	N	Neg	Neg				
12	5	Y							0	N	Neg	Neg
13	6	Y								0	N	32.88
14	7	N			0	N	Neg	Neg				
15	1	Y			0.6	Y	29.26	32.58				
16	2	Y		23	0.9	Y	31.21	34.50				
17	3	Y			0.6	Y	37.05	40.69				
18	4	Y	27.03.2014		0.4	Y	29.2	32.19				
19	5	Y			0.75	N	36.61	Neg				
20	6	Y			0.8	Y	33.30	37.52				
21	7	Ν			0	N	Neg	Neg				

- Site in the South West of Ireland was selected to be included in the Longitudinal study.
- Sampling commenced in late April 2013 shortly after smolts were transferred to sea.
- Samples (5 fish from 2 cages) were collected every 2-3 weeks
 - Gross assessment
 - Gill smears
 - Histology
 - PCR

Date sampled	Mean gill score	Histological results	PCR results
07/05/2013	0.1	No amoeba, no gill pathology (or No evidence of AGD)	3/10 positive
23/05/2013	0	No amoeba, no gill pathology	Negative
05/06/2013	0	No amoeba, no gill pathology	Negative
11/06/2013	0.2	No amoeba, no gill pathology	Negative
28/06/2013	0	No amoeba, no gill pathology	1/10 positive
09/07/2013	0	No amoeba, no gill pathology	4/10 positive
31/07/2013	2.5	Pathology consistent AGD observed in all of the gills. Amoebae were observed	10/10 positive
16/08/2013	2	No amoeba observed, Gill pathology observed	1/10 positive
02/09/2013	0.35	No amoeba observed. Gill pathology is very slight	7/10 positive
25/09/2013	1.5	No amoeba observed. The gill changes suggest changes associated with AGD.	8/10 positive
18/10/2013	0	No amoeba observed, Low to moderate pathology	3/10 positive
04/11/2013	0.7	No amoeba observed, low level pathology	9/10 positive
29/11/2013	0.6	Amoeba observed, low to moderate of pathology	10/10 positive
17/12/2013	0.6	N/A	9/10 positive
17/01/2014	0.5	No amoeba observed. Gill pathology low	7/10 positive

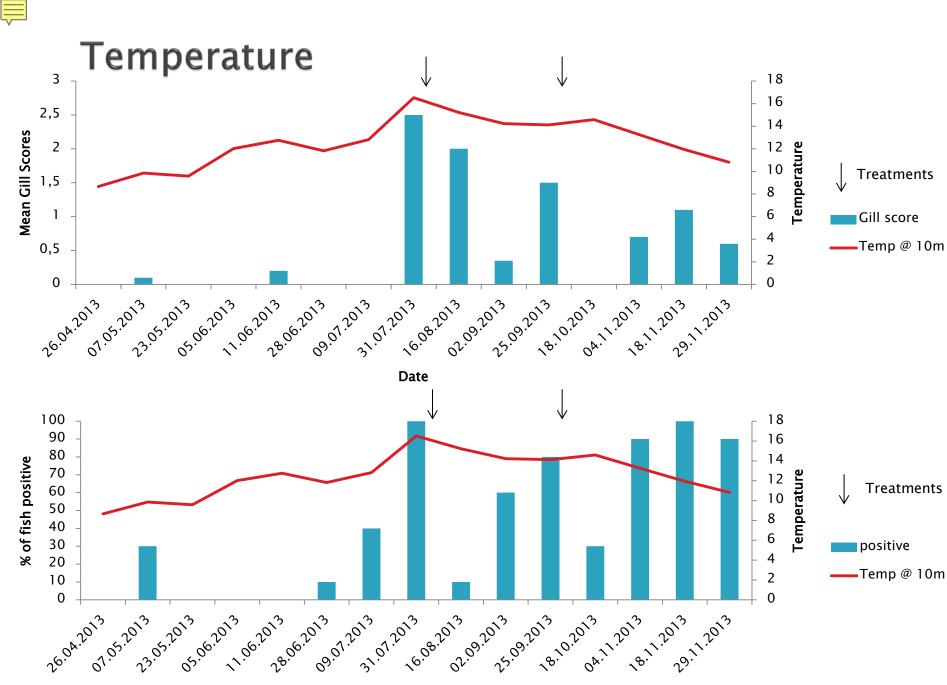

Date sampled	Mean gill score	Histological results	PCR results
07/05/2013	0.1	No amoeba, no gill pathology (or No evidence of AGD)	3/10 positive
23/05/2013	0	No amoeba, no gill pathology	Negative
05/06/2013	0	No amoeba, no gill pathology	Negative
11/06/2013	0.2	No amoeba, no gill pathology	Negative
28/06/2013	0	No amoeba, no gill pathology	1/10 positive
09/07/2013	0	No amoeba, no gill pathology	4/10 positive
31/07/2013	2.5	Pathology consistent AGD observed in all of the gills. Amoebae were observed	10/10 positive
16/08/2013	2	No amoeba observed, Gill pathology observed	1/10 positive
02/09/2013	0.35	No amoeba observed. Gill pathology is very slight	7/10 positive
25/09/2013	1.5	No amoeba observed. The gill changes suggest changes associated with AGD.	8/10 positive
18/10/2013	0	No amoeba observed, Low to moderate pathology	3/10 positive
04/11/2013	0.7	No amoeba observed, low level pathology	9/10 positive
29/11/2013	0.6	Amoeba observed, low to moderate of pathology	10/10 positive
17/12/2013	0.6	N/A	9/10 positive
17/01/2014	0.5	No amoeba observed. Gill pathology low	7/10 positive

Date sampled	Mean gill score	Histological results	PCR results
07/05/2013	0.1	No amoeba, no gill pathology (or No evidence of AGD)	3/10 positive
23/05/2013	0	No amoeba, no gill pathology	Negative
05/06/2013	0	No amoeba, no gill pathology	Negative
11/06/2013	0.2	No amoeba, no gill pathology	Negative
28/06/2013	0	No amoeba, no gill pathology	1/10 positive
09/07/2013	0	No amoeba, no gill pathology	4/10 positive
31/07/2013	2.5	Pathology consistent AGD observed in all of the gills. Amoebae were observed	10/10 positive
16/08/2013	2	No amoeba observed, Gill pathology observed	1/10 positive
02/09/2013	0.35	No amoeba observed. Gill pathology is very slight	7/10 positive
25/09/2013	1.5	No amoeba observed. The gill changes suggest changes associated with AGD.	8/10 positive
18/10/2013	0	No amoeba observed, Low to moderate pathology	3/10 positive
04/11/2013	0.7	No amoeba observed, low level pathology	9/10 positive
29/11/2013	0.6	Amoeba observed, low to moderate of pathology	10/10 positive
17/12/2013	0.6	N/A	9/10 positive
17/01/2014	0.5	No amoeba observed. Gill pathology low	7/10 positive



Molecular results

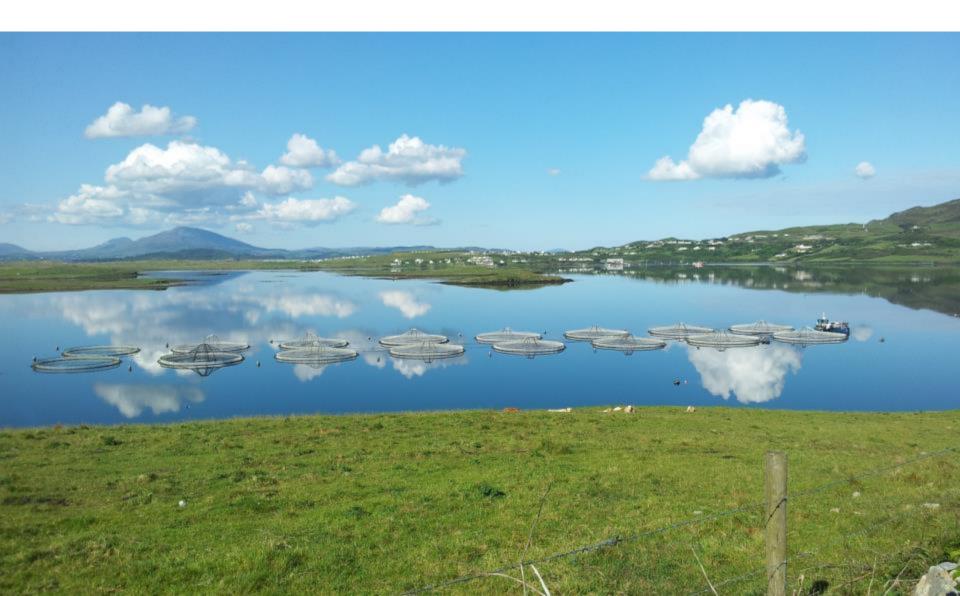
Molecular results



Temperature

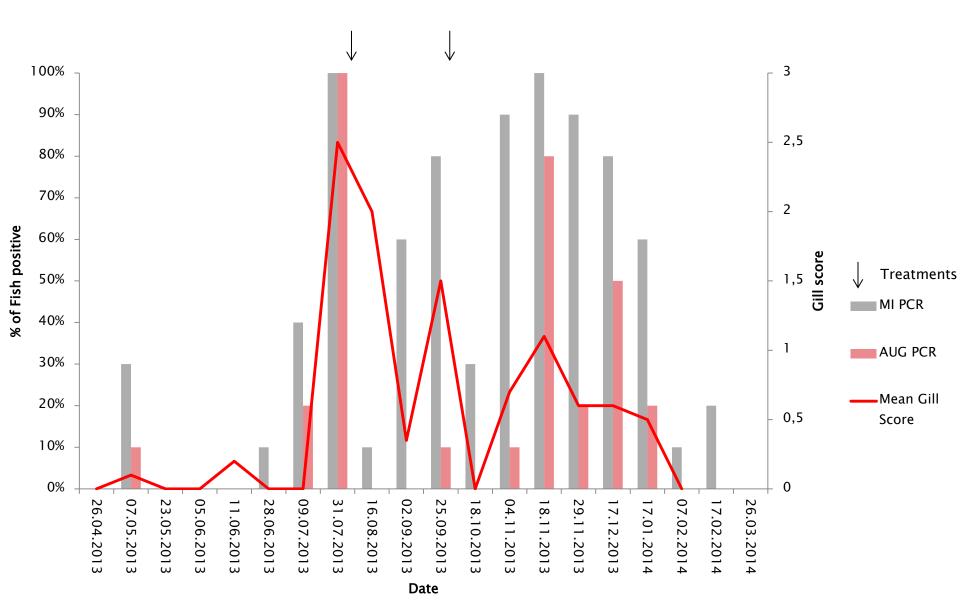
- Water temperature had significant influence during AGD outbreak
 - Large increase in temp in July at onset of outbreak
 - Problematic for treatments
- Average temperature peaked at 19°C

Date



- N. perurans first detected by PCR on June 28th before outbreak.
- Gill scores were 0 until July 31st.
- Treatments reduced % PCR positive fish and gill scores
- Amoeba detected by PCR until March 23rd.
- Although no samples positive in March for Cages 1 & 5, other cages on site are positive.
- New PCR methods appears to be sensitive enough to pick up infection 2/3 weeks prior to gross assessment

Future plans


- Longitudinal Study
 - Environmental data, O2, salinity
 - Growth, mortalities, husbandry
 - Other pathogens, Desmozoon lepeophtherii
- Molecular
 - Further sequencing
 - Cloning of culture DNA-allow for quantification
 - Archive samples
- Morphology
- Proteomics
 - Collect samples from infection trial or farm

Thank you for your attention.

Molecular results

