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Introduction

The problem of how to assess the welfare status of fish is

an ongoing debate and no consensus has been reached on

definitions or assessment methodology (Ashley 2007;

Huntingford & Kadri 2008; Segner et al. 2012). However,

food and aquaculture authorities ask for methods that

can be used to assess fish welfare and thus check the fulf-

ilment of laws and regulations. A number of EU projects

and national projects related to fish welfare have been or

are being performed. These use a range of approaches

from studies of fish behaviour to microarrays and a num-

ber of welfare related indicators have been suggested, but

without an integrating model and theory, much confusion

remains as to how the indicators can be scored, weighted

and integrated into an overall welfare assessment (OWA).

To gain the best possible assessment, an OWA model

should be based on observations of the animals, their
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Abstract

A semantic model for overall welfare assessment of Atlantic salmon reared in

sea cages is presented. The model, called SWIM 1.0, is designed to enable fish

farmers to make a formal and standardized assessment of fish welfare using a

set of selected welfare indicators. In order to cover all welfare relevant aspects

from the animals’ point of view and to create a science-based tool we first

identified the known welfare needs of Atlantic salmon in sea cages and

searched the literature for feasible welfare indicators. The framework of seman-

tic modelling was used to perform a structured literature review and an evalua-

tion of each indicator. The selected indicators were water temperature, salinity,

oxygen saturation, water current, stocking density, lighting, disturbance, daily

mortality rate, appetite, sea lice infestation ratio, condition factor, emaciation

state, vertebral deformation, maturation stage, smoltification state, fin condi-

tion and skin condition. Selection criteria for the indicators were that they

should be practical and measureable on the farm, that each indicator could be

divided into levels from good to poor welfare backed up by relevant scientific

literature. To estimate each indicator’s relative impact on welfare, all the indi-

cators were weighted based on their respective literature reviews and according

to weighting factors defined as part of the semantic modelling framework. This

was ultimately amalgamated into an overall model that calculates welfare

indexes for salmon in sea cages. More importantly, the model identifies how

each indicator contributes (negatively and positively) to the overall index and

hence which welfare needs are compromised or fulfilled.
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biological and physical environments, and the available

scientific knowledge (Bracke et al. 1999b; Anon 2001),

and the selected welfare indicators (WIs) should be spe-

cies specific, validated, reliable, feasible and auditable

(EFSA 2009). There are two closely related approaches for

creating OWA models; risk analysis (EFSA 2006a,b;

Bracke et al. 2008) and semantic modelling (Bracke et al.

2002a,b). The prime objectives of risk analysis are to

identify hazards, their consequences and probabilities of

occurrence, and to find critical control points in the pro-

duction process to avoid welfare risks, e.g. stress, injuries,

disease and mortality. Semantic modelling follows a prin-

cipally different approach, focusing on welfare defined as

the quality of life as perceived by the animals themselves

and is searching for indicators of the degree of fulfilment

of the animal’s welfare needs and the effects on the ani-

mals’ wellbeing. Since semantic modelling considers both

positive and negative aspects of welfare it is a risk–benefit

analysis (Bracke et al. 1999a,b,c, 2008).

This paper describes a first attempt to apply semantic

modelling to review commonly used WIs for farmed

Atlantic salmon (Salmo salar L.) and to propose a science

based model and tool for OWA in the sea cage phase.

Atlantic salmon is chosen as the case species given its

great importance in aquaculture and since there is a rea-

sonable amount of scientific knowledge available. The

model is named SWIM 1.0, an acronym for Salmon Wel-

fare Index Model, where no. 1 states that it is the farmer’s

version and .0 states that this is the pilot version which

may be revised and upgraded later. A web application

(http://www.imr.no/swim) was constructed in order to

facilitate author collaboration when updating the model’s

scientific database (statements from the literature) and

the model itself. The web application will also support

updating the model with results from future research,

such that SWIM will be a dynamic and up-to-date model.

The model is primarily intended as a tool for fish farmers

to assess fish welfare in sea cages, but will be expanded

with WIs that can be measured by farm veterinarians

(SWIM 2) and fish welfare experts (SWIM 3). For use by

fish farmers it is important that the WIs are limited in

number, feasible and practical to use. The indicators

employed in the current version and their weightings in

the model may change in future versions as knowledge of

different WIs expands.

The semantic modelling concept

The semantic modelling concept for the purpose of for-

malized assessment of animal welfare was first introduced

by Bracke et al. (1999a,b,c), and is based on the meaning

(semantics) of available scientific information about the

animals’ welfare needs and how these are related to

animal welfare. This includes scientific descriptions of

housing systems in terms of both environment based and

animal based measures, and how these affect animal wel-

fare. Semantic modelling was first applied to assess hous-

ing systems for dry sows (Bracke et al. 2002a,b), but it

has also been applied to assess overall welfare in laying

hens (De Mol et al. 2004, 2006; Shimmura et al. 2011),

for tail biting in pigs (Bracke et al. 2004a,b), for enrich-

ment materials for pigs (Bracke et al. 2007a,b; Bracke

2008), in dairy cattle (Ursinus et al. 2009) and for wal-

lowing in pigs (Bracke 2011; Bracke & Spoolder 2011).

In view of the ongoing debate about fish welfare, it is

necessary to clarify definitions and underlying assump-

tions that the semantic modelling of animal welfare rests

on: Welfare is here defined as ‘the quality of life as per-

ceived by the animals themselves’, and the ability to expe-

rience welfare is seen as part of the emotional monitoring

system that guides animals (with advanced central ner-

vous systems) in getting what they need and avoiding

harm and dangers in an effective way. In order to survive

an animal must fulfil its basic needs; e.g. nutrition, respi-

ration, thermoregulation etc., and to this end, animals

continuously assess their state of need. The qualitative

welfare experience is created by the reward and punish-

ment systems in the emotional brain, and involves experi-

ence, memories and re-evaluation of needs in anticipation

of physiological, psychological and behavioural require-

ments (Berridge 2004; Panksepp 2005; Korte et al. 2007).

There is growing evidence that teleost fish, and hence sal-

mon, can feel pain and that they possess functional equiv-

alents of the limbic and dopaminergic nervous systems –

systems that are linked with emotion, memory, spatial

relationships, primary consciousness, reward, cost–benefit

estimation and decision-making (Sneddon 2003; Brai-

thwaite & Huntingford 2004; Chandroo et al. 2004a,b;

Håstein et al. 2005; Braithwaite & Boulcott 2007; Broom

2007; Galhardo & Oliveira 2009; Braithwaite 2010; Tor-

gersen et al. 2011). In short, there are strong indications

that also fish are able to experience states of welfare.

Based on this we assume that salmon experience a

continuum of welfare states, which may vary from very

poor to excellent and that are closely related to the

degree of fulfilment of the salmons’ welfare needs, i.e.

needs monitored by the emotional brain. An OWA

should be in accordance with the needs-assessment per-

formed by the animals themselves. However, since we

cannot tap directly into the animal brain, we must assess

their state of need and emotionality based on observa-

tions of the animals and what we know about the way

they respond to a variety of environmental conditions.

This implies using scientific knowledge about animal

physiology and behaviour to surmise their welfare state

(Bracke et al. 1999c).
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Welfare relevant needs of farmed Atlantic salmon

We used a slightly modified version of the semantic

modelling procedure described in Bracke et al. (2002b).

First, based on the list of needs presented in Bracke

et al. 1999c we formulated a list of known welfare needs

for Atlantic salmon in sea cages (Table 1). The physical

welfare needs include respiration, osmotic balance, nutri-

tion, good health and thermoregulation. Behavioural

welfare needs describe motivations to perform specific

behaviours to get an immediate reward or for which the

mere performance is rewarding and are behaviours that

have evolved to fulfil more ultimate goals related to sur-

vival, growth or reproduction (Jensen & Toates 1993).

For Atlantic salmon in sea cages we include behaviour

control, feeding, safety, protection, social contact, explo-

ration, kinesis, rest, sexual behaviour and body care. To

avoid confusion, we must emphasize that the distinction

between physical and behavioural needs, and also the

distinctions between needs, is not absolute and that

overlaps exist.

Linking of welfare indicators to welfare needs

In order to cover all welfare relevant aspects from the

animals’ point of view we searched the literature for fea-

sible welfare indicators suggestive of the fulfilment of

the welfare needs and 17 WIs were selected for inclusion

in the SWIM 1.0 model. All the WIs were linked to at

least one of the needs and all welfare needs are linked

to at least one WI (Table 2). This was done to make

sure that all the indicators concern the degree of fulfil-

ment of the welfare needs and that the assessment cov-

ers all welfare relevant needs from the salmons’ point of

view.

Welfare indicator literature review, ranking of
levels and weighting

The next step of the semantic modelling procedure is to

collect relevant scientific statements, obtained from a sys-

tematic literature review (Bracke et al. 2002b). In this

review we used the selection criterion that the statements

are relevant to assess the fulfilment of needs of Atlantic

salmon kept in sea cages. Sources include ISI Web of

KnowledgeSM, Google ScholarTM and various books and

reports on the topic. As far as possible the statements are

species specific and for the post-smolt sea water adapted

life stage of Atlantic salmon. Based on the review the WIs

were scaled on at least two levels from best to worst.

According to semantic modelling these levels must be

mutually exclusive and cover the model’s domain, i.e. in

our case on-growing of Atlantic salmon in sea cages. Each

WI-level must also be linked to at least one scientific

statement that provides the scientific basis of the weight-

ing of the model: Firstly, the levels are ranked within each

WI to create indicator scores (IS):

ISi;j ¼
NLi � RLi;j

NLi � 1
ð1Þ

where ISi,j is the score of the j-th level of the i-th WI in the

model, NLi is the total number of levels of indicator i and

RLi,j is the rank number of level j. Next, the scientific evi-

dence is used to assign weighting scores (WS) using

weighting categories (WC) (Table 3). This is a somewhat

subjective, but systematic, scoring based on an assessment

of the intensity, duration and incidence of the welfare

impact as implied by each scientific statement that has been

linked to the WI. The WC’s classify welfare performance

criteria, e.g. pain, illness and reduced survival (Table 2).

Table 1 List of Atlantic salmons basic needs, adapted from Bracke et al. (1999c)

Need Explanation and relevance for salmon

Physical needs Respiration Uptake of oxygen and release of carbon dioxide by pumping water over the gills

Osmotic balance Maintaining homeostasis of body cell fluids

Nutrition Intake of food containing the required energy, amino acids, minerals, vitamins etc.

Health Absence of disease, illness and malfunction

Thermal regulation Optimization of metabolism and temperature, including thermal comfort

Behavioural needs Behaviour control Ability of the fish to freely position themselves (including regulation of buoyancy)

and respond to stimuli

Feeding Regular access to food

Safety Possibility to avoid perceived danger

Protection Possibility to keep the body undamaged from physical injury

Social contact Predictable interaction with conspecifics

Exploration Possibility to search for resources and information

Kinesis Being able to swim (physical activity)

Rest Possibility of reducing activity level or ‘sleep’

Sexual behaviour Homeward migration, breeding behaviour, spawning, etc.

Body care Scratching, parasite cleaning, etc.

Salmon Welfare Index Model (SWIM 1.0)
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The weighting factor (WF) of each welfare indicator i in

the model was subsequently calculated as proposed by De

Mol et al. (2006):

WFi ¼
X

wc

maxðWSwclÞ
 !

ILbest;i

�
X

wc

minðWSwclÞ
 !

ILworst;i

ð2Þ
where ILbest,i is the best indicator level and ILworst,i is the

worst indicator level of the i-th welfare indicator, WSwcl

is the weighting score assigned to the indicator level based

on the scientific statements; wc identifies the weighting

categories linked to the indicator level. A special case is

made up of WI-levels that are so detrimental for welfare

that welfare is poor (minimum), no matter which levels

are selected for the other indicators. These levels are

called knockout levels, and if present the overall welfare

index (OWI) is defined as 0. Knockout levels are not

included when calculating WFs.

As much as possible each indicator was reviewed as

stand alone, i.e. if an indicator level has an effect on

another indicator the resulting change in fish welfare is

attributed to the second indicator and not the first. As an

example, high stocking densities may lead to poor oxygen

levels if the water in the cage is not sufficiently replenished.

The low oxygen level has a direct effect on the fish and this

is hence the primary WI in this specific example. Each sec-

tion below reviews a WI, and each review section includes

a ranking and weighting paragraph. For each weighting the

WS is given in parenthesis behind its respective WC. The

WIs and WCs have been given capital first letters in these

paragraphs for easy recognition. This is done in detail for

the first WI, i.e. the temperature-indicator, but only for the

best and worst level for the remaining indicators. The WSs

are expert opinions based on the reviews, but the reader is

free to challenge these decisions.

Temperature (�C)

Temperature governs the metabolic rate of salmon, and

thereby acts as a controlling and limiting factor together

with oxygen for the fishes’ physiological performance

including their capacity for dealing with stressors. The rele-

vance of water temperature as a welfare indicator is evident

from tolerance limits and temperature preferences of

Atlantic salmon in sea cages. A temperature preference in

temperature stratified conditions in sea cages of about

17�C is suggested by Johansson et al. (2006, 2009), which

correspond well with the finding that the Atlantic salmons’

selected temperature in a horizontal temperature gradient

increased with acclimation (5–20�C), showing a final pref-

erence at about 17�C (Javaid & Anderson 1967). In the

available range between 11 and 20�C, caged Atlantic sal-

mon individuals and groups clearly avoided water warmer

than 18�C as well as water colder than 12�C (Johansson

et al. 2006, 2009; Oppedal et al. 2011a,b). The temperature

tolerance is highly dependent on fish acclimatization states,

and in general Atlantic salmon can adapt to a range from 0

Table 2 The most significant links between the selected welfare indicators and the welfare needs of Atlantic salmon in sea cages

Needs Respiration

Osmotic

balance Nutrition Health

Thermal

regulation

Behaviour

control Feeding Safety Protection

Social

contact Exploration Kinesis Rest

Sexual

behaviour

Body

care

Welfare indicator

Temperature * *

Salinity * *

Oxygen *

Water current * * *

Stocking density * * * *

Lighting * * *

Disturbances * *

Daily mortality *

Appetite * * * *

Sea lice * * *

Condition factor * * *

Emaciation state * * * * *

Sexual maturity

stage

* *

Smoltification

state

* *

Vertebral

deformation

* *

Fin condition * * * *

Skin condition * * *

L. H. Stien et al.
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to 20–23�C provided sufficient oxygen levels and gradual

transitions between temperatures are applied (Priede 2002;

EFSA 2008). An Icelandic stock of Atlantic salmon survived

1 month with water temperatures <0�C before mortalities

started to occur at )1.4�C (Skuladottir et al. 1990). On the

opposite end of the scale Goncalves et al. (2006) observed

increased mortality already at temperatures slightly above

18�C in the case of full-strength seawater, and Hevrøy et al.

(2011) found more than 50% reduction in feed intake,

growth and feed utilization after 2 weeks at 19�C compared

with salmon at 14�C. This shows that the margins are small

between temperatures that salmon seem to prefer and what

may be harmful to them (with exponential effects occur-

ring in the upper range). Comparing Atlantic salmon

reared at 6, 10, 14 and 18�C for 12 weeks following transfer

to seawater, Handeland et al. (2008) found that growth

rate, feed intake, feed conversion efficiency (FCE) and

stomach evacuation rate were significantly influenced by

temperature and fish size. The highest growth rate was seen

in the 14�C group (1.53% d)1). No differences in growth

were found between the 10 and 18�C groups (1.35% d)1

vs. 1.29% d)1), and lowest growth rates were observed for

the 6�C group (0.78% d)1). However, in a recent study,

16�C induced a long-term reduced growth rate compared

with 10�C following vaccination (Grini et al. 2011).

Based on this review we propose that the temperature

WI can be divided into six levels, which can be ranked

for welfare as follows: (1) 10–15�C, (2) 7–10�C, (3) 16–

17�C, (4) 3–6�C, (5) £2, ‡18, short term and (6) £2, ‡18,

long term. These are temperatures within the normal

seasonal range Atlantic salmon experience in sea cages.

Atlantic salmon have Positive performance (3) and show

Preference (2) for level 1: 10–15�C. 7–10�C is ranked as

level 2 since Performance and Preference is less compared

with level 1. 16–17�C ranks as level 3 since here the sal-

mon is susceptible to harm, but above 3–6�C as level 4

since salmon prefer the third to the fourth level. Very

high (‡18�C) and low temperatures (£2�C) are associated

with avoidance ()2), negative performance ()3), illness

()3) and reduced survival ()3) giving a total WS of )11

for level 5. Very high and low temperatures can be lethal

if they persist for a long time. Level 6 is therefore a

knockout level. Finally, Equation 2 gives a weighting

factor of 16 (Eqn 2: WF = (3 + 2))()2)3)3)3), Table 4)

for the temperature WI.

Salinity

During the smoltification process salmon develop tolerance

for brackish and seawater salinity. Adult, non-migratory

Atlantic salmon is little affected by salinity (Bakke et al.

1991; Johansson et al. 2006, 2009), unless damage to the

skin and disease impair their osmoregulatory ability (Grim-

nes & Jakobsen 1996; Boxaspen 2006). Mature salmon have

altered osmoregulation in adaptation to a hypo-osmotic

environment before re-entering freshwater in nature (Pers-

son et al. 1998) and may therefore experience osmoregula-

tory challenges in high salinities. Small salmon display a

preference for the halocline (Oppedal et al. 2011a) and

may benefit from access to brackish water (Handeland

Table 3 Weighting categories used in the weighting procedure of semantic modelling with brief descriptions and ranges of weighting scores

(WSs). Adapted from Bracke et al. (2002b)

Weighting category Brief description Range of WS

HPI Evidence of activation of the HPI (hypothalamic pituitary interrenal) axis indicative of stress )5 to )1

Illness Evidence of health problems, including increased mortality, but excluding skin lesions, fin damage and

abnormalities in body shape (see ‘pain’)

)5 to )1

Pain Evidence of pain including skin and fin damage )5 to )1

Reduced survival Evidence of reduced survival related to physiological requirements (other than through specific health

problems), e.g. longevity, deprivation of food, poor

environment

)5 to )1

Abnormal behaviour Evidence of disturbed behaviour and or apathy )3 to )1

Aggression Evidence of aggression such as bite marks and attacks )3 to )1

Avoidance Evidence of avoiding stimuli (which are perceived as dangerous ⁄ noxious) )3 to )1

Frustration Evidence of blocked behaviour or deprivation )3 to )1

Negative performance Evidence of decreased performance (that is likely to indicate negative affect),

including (re)production effects, but excluding specific survival aspects related to physiological

necessities, HPI-activation and illness

)3 to )1

SAM Evidence of SAM (sympathetic adrenal medullary) activation

(indicative of negative affect), e.g. increased heart rate and (nor)adrenalin levels

)3 to )1

Demand Evidence that the fish are willing to spend effort to obtain food or other recourses 1 to 5

Natural behaviour Evidence of (potential positive reward from) behaviour as seen in (semi) natural conditions 1 to 3

Positive performance Evidence of healthy, fit fish 1 to 3

Preference Evidence of choosing one resource over another (e.g. in a preference test) 1 to 3

Salmon Welfare Index Model (SWIM 1.0)

Reviews in Aquaculture (2013) 5, 33–57
ª 2013 Wiley Publishing Asia Pty Ltd 37



Table 4 Welfare indicators (WI) with levels from best to worst, the associated indicator level score (IS), the sum of the weighting scores assigned

to the best and worst level and the calculated weighting factor (WF), see Eqn 2. Levels with indicator score K are knockout levels, i.e. levels that

result in severely reduced welfare regardless of other WIs

WI # Levels IS S WF

Environment Sea cage Temperature (�C) 1 10–15 1.00 5 16

2 7–10 0.75

3 16–17 0.50

4 3–6 0.25

5 £2, ‡18, short term 0.00 )11

6 £2, ‡18, long term K

Salinity 1 Access to brackish water 1.00 1 3

2 Adult fish with no access to brackish water 0.50

3 Small post smolts, maturing or clearly

impaired fish with no access to brackish

water

0.00 )2

Oxygen (%) 1 >80%, all temperatures 1.00 1 17

2 70–80% for warm water (�18�C),

60–80% (�12�C),

50–80% cold water (6�C) 0.50

3 60–70% for warm water (�18�C),

40–60% (�12�C),

30–50% cold water (6�C) 0.00 )8

4 <60% for warm water (�18�C),

<40% (�12�C),

<30% cold water (6�C) K

Water current (BL s)1) 1 <0.9 1.00 1 3

2 0.9 – Ucrit, 0.00 )2

3 ‡Ucrit K

Stocking density (kg m)3) 1 <22 1.00 1 8

2 22–26 0.66

3 26–32 0.33

4 >32 0.00 )7

Lighting 1 Optimal 1.00 2 4

2 Suboptimal 0.00 )2

Disturbances 1 None 1.00 1 11

2 Light 0.67

3 Moderate 0.33

4 Severe 0.00 )10

Animal Mortality (% day)1) 1 At or below 10 percentile curve 1.00 3 21

2 Below benchmark curve 0.75

3 At the benchmark curve 0.50

4 Above the benchmark curve 0.25

5 At or above the 90 percentile curve 0.00 )18

6 At or above the 90 percentile curve, long term K

Individual fish

Appetite 1 Good appetite 1.00 6 11

2 As expected 0.50

3 Poor appetite 0.00 )5

Sea lice 1 No lice 1.00 1 11

2 Light infestation 0.66

3 ‡0.05 pre-adult or adult lice cm)2 fish 0.33

4 ‡0.08 pre-adult or adult lice cm)2 fish 0.00 )10

5 ‡0.12 pre-adult or adult lice cm)2 fish K

Condition factor 1 >1.1 1.00 3 6

2 0.9–1.1 0.50

3 <0.9 0.00 )3

Emaciation state 1 Not emaciated 1.00 1 16

2 Potentially emaciated 0.00 )15

3 Distinctly emaciated K

L. H. Stien et al.
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et al. 1998) as osmoregulation is relatively costly for them.

Swimming in brackish water may also help the salmon to

avoid sea lice infestation (Lepeophtheirus salmonis) (Hevrøy

et al. 2003; Plantalech Manel-La et al. 2009) as the infec-

tious larvae of sea lice do not tolerate low salinities (Bric-

knell et al. 2006). Salinity has been suggested as a factor

regulating swimming depth in adult salmon, but current

evidence suggests that salinity is unimportant in determin-

ing vertical distributions in immature fully smoltified sea-

water-transferred Atlantic salmon (Johansson et al. 2006,

2007; Oppedal et al. 2011a).

To conclude, there is little evidence that salinity levels

have significant effects on the welfare of adult Atlantic

salmon in sea cages. We do, however, suggest three levels

for the Salinity WI: (1) Access to brackish water, (2)

Adult fish with no access to brackish water (in a sea cage

containing 10–400 000 individuals it is likely that some

fish have compromised osmotic balance) and (3) Poorly

smoltified, maturing or impaired fish with no access to

brackish water. These fish (level 3) will show Preference

(1) for brackish water, and otherwise have negative per-

formance ()1) and reduced survival ()1). In accordance

with limited evidence for strong effects on fish welfare the

calculated WF is only 3 (Eqn 2, Table 4).

Oxygen saturation (%)

For this welfare indicator it is necessary to first explain

why we use oxygen saturation (%) and not oxygen

concentration (mg L)1). These measures are of course

related, but as oxygen solubility decreases with tempera-

ture and salinity, the oxygen concentration correspond-

ing to any level of oxygen saturation varies. Both

concentration and saturation are meaningful metrics of

available oxygen in the water. Any oxygen that is to be

utilized by fish tissues must be extracted from the

water ventilated by the fish over its gills, and at any

given saturation, cooler and less saline water contains

more oxygen. However, the diffusion gradient of oxy-

gen over the gills depends on oxygen saturation of the

water, and at any given concentration of oxygen, the

higher saturation in warmer, more saline water aids

oxygen uptake over the gills. Also, a considerable

strength of using saturation as the operational welfare

indicator is how intuitive inferences can be drawn from

such readings without any knowledge about tempera-

ture, salinity and solubility: 80% oxygen tells us that

the fish is offered 80% of what is found in pure water

at equilibrium with air.

Table 4 (Continued)

WI # Levels IS S WF

Vertebral deformation 1 No external signs of vertebral deformities 1.00 1 10

2 ‘Short-tail’ of normal weight 0.50

3 ‘Short-tail’ of low weight. 0.00 )9

Sexual maturity stage 1 Not mature 1.00 1 9

2 Precocious male 0.66

3 Mature male 0.33

4 Mature female 0.00 )8

Smoltification state 1 Fully smoltified 1.00 1 9

2 Parr, access to brackish water 0.75

3 Parr, incomplete smoltification, 10�C 0.50

4 Parr, incomplete smoltification, 14�C 0.25

5 Parr, incomplete smoltification, 7�C 0.0 )8

6 Parr, incomplete smoltification, 20�C K

Fin condition 1 Normal healthy fins, nothing to comment 1.00 3 13

2 Scar tissue or slight necrosis 0.66

3 Moderate current skin damage and ⁄ or necrosis

including splitting and ⁄ or thickening

0.33

4 Severe skin damage and ⁄ or necrosis with bleeding

and ⁄ or inflammation and ⁄ or exposed fin

rays and severe tissue loss

0.00 )10

Skin condition 1 Normal healthy skin, nothing to comment 1.00 1 15

2 Scar tissue, healed 0.80

3 Scale loss (dislocated or missing scales) 0.60

4 Superficial wound or ulcer <1 cm2 0.40

5 Superficial wound or ulcer >1 cm2 0.20

6 Penetrating and ⁄ or multiple wounds or

ulcers possibly infected

0.00 )14

7 Large open wounds, life threatening K

Salmon Welfare Index Model (SWIM 1.0)
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Stevens et al. (1998) found that the routine oxygen

uptake of juvenile Atlantic salmon in freshwater at 12–

13�C was not limited by water oxygen saturations above

38%. This is confirmed in recent studies in sea water

(reviewed in Oppedal et al. 2011a) showing that at 18, 12

and 6�C 400 g salmon post-smolt are not able to maintain

routine metabolic rates below approximately 60%, 40%

and 30% saturation, respectively. Below these thresholds

mortality will commence in farmed salmon if oxygen levels

are not improved. The difference between the routine and

the maximum metabolic rate (the maximum theoretically

possible oxygen uptake under the present conditions) acts

as a buffer against factors such as stress, disease and feed-

ing, which narrow this metabolic scope (e.g. Helfman et al.

1997; Priede 2002). Salmon will therefore migrate vertically

in sea cages to avoid hypoxic zones (Oppedal et al. 2011a).

A summary from several hypoxia trials (WEALTH 2008)

concluded that immune responses are reduced at levels

below 55% oxygen saturation, and Sundh et al. (2010)

found that the intestinal function was clearly disturbed at a

level of 50% for salmon kept at both 9�C and 16�C. Fur-

thermore, studies with full-feeding Atlantic salmon held in

seawater at 16�C and given fluctuating oxygen levels from

90 to 70% showed reduced appetite, fluctuating from 90 to

60% also initiated acute anaerobic metabolism and

increased skin lesions, fluctuations from 90 to 50% addi-

tionally initiated acute stress responses, reduced feed con-

version and growth, and fluctuations from 90 to 40%

additionally caused impaired osmoregulation and mortali-

ties (Remen et al. 2012). Moderate environmental hypoxia

also has an effect. Crampton et al. (2003) and Bergheim

et al. (2006) found that salmon displayed reduced growth

at 75% oxygen in 9�C water and at 85% in 15�C water,

respectively, compared with fish kept at 100% oxygen. This

high sensitivity of growth rate to oxygen availability sug-

gests that even modest reductions in oxygen saturation

may start causing welfare problems.

Based on this review we suggest that oxygen levels

above 80% do not cause welfare problems for salmon in

sea cages, but instead are associated with Positive perfor-

mance (3). We divide the dissolved oxygen (DO) WI into

four level combinations of oxygen saturation and temper-

ature (Table 4), including one knockout level. The worst

level, excluding the knockout is set to: 60–70% and

�18�C, 40–60% and �12�C or 30–50% and �6�C. This

level is associated with avoidance ()3), negative perfor-

mance ()3), illness ()3) and reduced survival ()5). This

gives a total WF of 17 (Eqn 2, Table 4).

Water current (measured as body lengths per second)

The water flow through a sea cage replenishes oxygen used

by the fish and flushes out metabolites and suspended sol-

ids such as faeces and excess feed (EFSA 2008; MacIntyre

et al. 2008). The swimming capacity of Atlantic salmon

depends on factors such as body size and metabolic scope

(Grøttum & Sigholt 1998). Observations from sea cages

show that during daytime salmon cruise at 0.3–0.9 BL s)1

(Juell 1995; Dempster et al. 2008, 2009; Korsøen et al.

2009), while they typically slow down during darkness to

0–0.4 BL s)1 (Korsøen et al. 2009). Salmon reared in race-

ways with a fixed current (28 cm s)1) for 8 months prior

to harvest showed nearly 40% higher weight gain compared

with control fish farmed in ordinary cages (Totland et al.

1987). Intensity of exercise has been found positively corre-

lated with disease resistance (Takle et al. 2010) and

improved cardio-vascular capacities (Jørgensen & Jobling

1994; Davison 1997). Although water current typically is

measured as m s)1, in regard to fish welfare it makes more

sense to measure it as BL s)1. High currents can drive small

salmon (400–800 g) to exhaustion already at 1.6–2.2

BL s)1 (McKenzie et al. 1998; Deitch et al. 2006), although

some can manage 3.0 BL s)1(Lijalad & Powell 2009). We

were unable to find data on larger Atlantic salmon, but

studies in Sockeye salmon (Oncorhynchus nerka) indicate a

critical swimming speed Ucrit of about 1.35 BL s)1 for lar-

ger salmonids (Steinhausen et al. 2008). It should be noted

that the above studies using swimming tunnels were per-

formed on starved fish and that fully fed, commercial fish

probably have lower thresholds due to less available scope

for activity.

In conclusion, the water flow through sea cages must be

sufficient to secure replenishment of oxygen. While satura-

tion with oxygen per se is a separate WI, water currents also

affect swimming speeds of the fish. We suggest dividing the

water current WI into three levels: At level 1 (<0.9 BL s)1)

currents provide exercise and give positive performance

(1), at level 2 (0.9 – Ucrit) welfare may be reduced, and

when the water velocity is so high that it exceeds critical

swimming speed (Ucrit) then water flow may even be lethal

for the fish (knock-out, level 3). We were not able to find

any literature about swimming speeds between the comfort

zone and the Ucrits (level 2), but it is reasonable to assume

that forced swimming leads to loss of control and

hence frustration ()2) over time. It is also reasonable to

assume that Ucrit in addition to size depends on the state of

the fish, for instance how adapted it is to high water cur-

rents. The farmer must, in other words, know the ability of

the fish or use a Ucrit of 1.3 for safe margins. In accordance

with scant evidence for the direct effects of water current

on fish welfare we get a WF of only 3 (Eqn 2, Table 4).

Stocking density (kg m)3)

Stocking density, defined as the total biomass of the fish

divided by the sea cage volume, is typically used by

L. H. Stien et al.

Reviews in Aquaculture (2013) 5, 33–57
40 ª 2013 Wiley Publishing Asia Pty Ltd



authorities to set upper limits for what is allowed in sea

cages (e.g. 25 kg m)3 in Norway). Despite its frequent use

as a production parameter there are relatively few studies

on how different stocking densities affect salmon in sea

cages. Turnbull et al. (2005) examined densities ranging

from 10 to 34 kg m)3 at a sea farm and found no

negative effects on the salmon, measured as a combined

score of body condition, fin condition, plasma glucose

and cortisol, up to an inflection point at about

22 kg m)3, and no substantial negative effect on these

parameters below 32 kg m)3. These findings were largely

confirmed in a tank study by Adams et al. (2007) and a

sea cage study by Oppedal et al. (2011b). Adams et al.

(2007) found negative effects on welfare for a stocking

density of 35 kg m)3 compared with 25 kg m)3, and

Oppedal et al. (2011b) found declined feed intake,

growth rate, feed utilization and a greater number of

cataracts when the stocking density exceeded

26.5 kg m)3. Unfortunately, these three studies provide

limited information about the oxygen saturation of the

water or the presence of endemic infections, which both

may have been important reasons for decreased fish

welfare at the higher densities (Johansson et al. 2006;

Oppedal et al. 2011b). A tank study indicates that low

stocking densities of only 57 individuals may lead to

aggression and reduced welfare (Adams et al. 2007), but

this has not been confirmed for low densities in sea

cages holding a higher number of individuals (Turnbull

et al. 2005; Johansson et al. 2006; Oppedal et al. 2011b).

Johansson et al. (2006) showed that salmon in sea cages

at high stocking densities (18–27 kg m)3) have limited

abilities to position themselves at preferred temperatures

compared with fish at lower densities (7–11 kg m)3) and

as a result grew less. Oppedal et al. (2007, 2011b)

showed that salmon may congregate into very tight

schools, with a local density above 180 kg m)3, in order

to avoid high temperatures. This illustrates that crowd-

ing of fish may be a response to an underlying factor,

i.e. competition for limited resources within the cage

and ⁄ or lack of ability to avoid sub-lethal ⁄ lethal condi-

tions, which seem to be far more relevant problems than

stocking density per se.

Although the literature shows that salmon may congre-

gate at extreme densities, we take as given that high over-

all densities limit the fish’s freedom to move in the cage.

Low stocking densities (below 22 kg m)3) will therefore

give more natural behaviour (1). At higher densities wel-

fare becomes incrementally worse until above 32 kg m)1,

where there is a substantial effect on negative perfor-

mance ()2), pain ()1), illness ()1) and activation of the

HPI-axis ()3). We divided the stocking density WI into

four levels from <22 kg m)3 to above 32 kg m)3 and

calculated a WF of 8 (Eqn 2, Table 4).

Lighting

Underwater lights are widely used in the industry to reduce

the incidence of sexual maturation (e.g. Oppedal et al.

2011a). Maturation is covered as a separate WI (see below),

but the underwater lights have also more direct implica-

tions for fish behaviour. Atlantic salmon tend to avoid

strong surface daylight (Huse & Holm 1993; Fernö et al.

1995), but are attracted to night-time surface and under-

water lights (Oppedal et al. 2001, 2007, 2011a; Juell et al.

2003; Juell & Fosseidengen 2004). Lighting the cage at night

stimulates the salmon to maintain daytime swimming

speeds and schooling behaviour, but the use of only surface

lights may result in fish swimming at very high densities

near the surface (Juell et al. 2003). Using submersible lights

at depths (e.g. 15 m) that allow the salmon to spread out

both above and below the lights, therefore, improves the

welfare of caged salmon (Juell et al. 2003; Juell & Fosseid-

engen 2004; Oppedal et al. 2007, 2011a).

Based on this we propose to divide the lighting WI

into two levels: (1) optimal and (2) suboptimal. Optimal

is the use of artificial lights at multiple depths. Subopti-

mal is narrow illumination of the cage volume, such as

moonlight, artificial lights positioned at only a shallow

depth or above the surface. Optimal lighting allows the

salmon to utilize the entire water column and hence con-

tributes to positive performance (1) and preference (1).

Lack of illumination may force the salmon to school at

high densities near the surface at night time and experi-

ence frustration ()1) and avoidance ()1) as the other

depth layers are not used. WF is calculated as 4 (Eqn 2,

Table 4). The lighting WI is defined as optimal during

the light season of the year.

Disturbances

Removing fish from the water, for instance when estimat-

ing the level of sea lice infestation, is one of the most

severe stress events, and induces a high cortisol response

(Schreck et al. 1997). However, this is usually done on

only a few individuals at a time and likely to have little

effect on the other fish in the cage. Other procedures may

affect the whole group, e.g. delousing by bath (Vigen

2008; Nilsen et al. 2010), grading (Juell et al. 2008) and

transportation (Iversen et al. 1998, 2005; Farrel 2005).

Studies of wellboat-transportation of smolts (Iversen et al.

2005) and live-hauling of harvest fish to processing facili-

ties (Farrel 2005) show that the salmon recover during

transportation from the initial handling stress of being

loaded. This recovery seems to be crucial for avoiding

cumulative and hence long-term stress during their initial

period in the sea cages (Iversen et al. 2005). Juell et al.

(2008) observed that crowding, pumping and sorting of
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salmon in sea cages led to a rapid drop in oxygen levels

(not critical) during the procedure. For several days the

fish were also more dispersed in the cages than before the

treatment and they did not congregate as much in the

warm surface layers as before. Appetite was reduced for

approximately 5 days, and did not increase with the

increasing surface temperatures in May, indicating a

strong negative effect of this commercial sorting proce-

dure. During delousing with bath treatment a bottom

opened or closed tarpaulin ‘skirt’ is placed around the

cage to keep the therapeutic chemicals inside the cage.

Various aspects of this procedure, including the distur-

bance, crowding, changed environment, skirt and the

treatment substance, may affect the fish. Vigen (2008)

found that in a group of salmon held at 25 kg m)3 the

oxygen saturation decreased to around 50% within

45 min after a skirt was placed around the cage, when no

treatment substance was added. After the treatment sub-

stance (the pyrethroid cypermethrin, Betamax Vet) had

been added within the skirt, salmon crowded at very high

densities (up to 107 kg m)3) near the surface. Oxygen

saturation decreased faster while the swimming speed and

gill ventilation frequency were higher and more variable.

In a compilation of observations during topical delousing

with skirts Nilsen et al. (2010) concluded that the salmon

avoided the therapeutant by swimming below the

enclosed volume when the nets were not lifted. Following

delousing, many farmers have reported poor performance

of the fish including poor appetite, reduced growth, dis-

ease outbreaks and increased mortalities.

We propose to divide the disturbances WI into four lev-

els: (1) none, (2) light, (3) moderate and (4) severe. Level 4

includes disturbances such as pumping of the fish which

may lead to activation of the HPI ()3) axis, abnormal

behaviour ()3), frustration ()1), negative performance

()1), illness ()1) and reduced survival ()1). Level 3

includes disturbances such as crowding and topical delous-

ing. Level 2 includes disturbances such as activity around

the cage that only stresses the fish to a mild extent. Level 1,

no disturbances, promotes natural behaviour (1) and the

total WF is calculated as 11 (Eqn 2, Table 4).

Daily mortality rate (% per day)

Mortality in farmed animals, including salmon, is an

indicator of disease outbreaks, poor environmental condi-

tions, or injuries, all conditions that are related to

reduced welfare. Aunsmo et al. (2008a) studied fish mor-

talities in 20 cages (10 sites) in the three first months

after transfer and found that the fish died from various

reasons including incomplete smoltification (5.6%), pre-

cocious males (3.3%), trauma (18.2%), specific diseases

(65.6%) or unknown reasons (7.6%). Cage mortality rates

were not normally distributed and 73% of the recorded

mortalities occurred in only 20% of the cages. The best

performing sea cages had a mortality rate, defined as the

number of dead fish divided by the total number of fish

in the cage multiplied by 100, of about 0.002% day)1,

while the worst cages had periods of mortality rates with

peaks of up to 2.4% day)1 with an average of 0.1%

day)1. Production data of fish mortalities in sea water

(2009–2011) from mid-Norway were grouped according

to smolt-groups (n = 127, 65.6 million individuals),

where 11% of the groups had >30% mortality, 55.9% had

30–20% mortality, 33.1% had <10% mortality, and the

average mortality was 16.1% (Anon 2011a). Disease dur-

ing the sea water phase accounted for 23.5% of the mor-

talities, smolt quality related problems accounted for 38%

and handling during the sea water phase accounted for

38.5% (Anon 2011a). In an extensive study of more than

88 production cycles in Scotland within one company,

Soares et al. (2011) developed benchmark mortality

curves. The 50-percentile benchmark curve starts at above

0.1% day)1 mortality during the first week after transfer,

between 0.01% and 0.1% during week 2–40, and then

<0.01% day)1 until slaughter. Using the 50-percentile

curve as a benchmark gives a total mortality of about

11% at the end of production. This is considerably better

than the total mortality value of 17% reported by the

Norwegian salmon industry and the 21% reported by the

Scottish Industry (Aunsmo et al. 2008a). For the 10- and

90-percentile curves and more detailed description of the

50-percentile curve see (Soares et al. 2011). The main

causes of mortalities in Soares et al. (2011) were disease

(31%), production factors (accident loss, caught in net,

cull, failed smolts, jacks, mature, net tear, parr, precocious

male, transfer, treatment kill, smolt transfer and suspected

cannibalism) (29%), environment (8%), predation (7%)

and other causes (26%).

High daily mortality compared with the benchmark is

indicative of illness ()5), reduced survival ()5), pain

()5) and negative performance ()3), while low daily

mortality indicates positive performance (3). Based on the

mortality benchmark study we suggest dividing the daily

mortality WI into five levels from best (at or below the

10-percentile curve) to worst (at or above 90-percentile

curve (Table 4). Long term values at or above the 90-per-

centile will lead to extreme mortality and is accordingly

considered to be a knockout level. The WF is calculated

to 21 (Eqn 2, Table 4).

Appetite

Appetite is defined here as the fish’s willingness to forage,

and the loss of appetite may be a sign of one or more

underlying welfare relevant conditions (Schreck et al.
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1997; Huntingford et al. 2006). Several studies have

reported a loss of appetite at seawater transfer (Usher

et al. 1991; Toften et al. 2003), infection or disease (Rod-

ger & McArdle 1996; Damsgård et al. 2004), handling

(McCormick et al. 1998), a deteriorating environment

(Bergheim et al. 2006; WEALTH 2008) and high stocking

density (Oppedal et al. 2011b). Many fish farmers use

appetite to determine feeding levels. It requires experience

in order to interpret the behaviour of the fish. The farmer

must assess appetite in relation to water temperature and

fish size. Generally, appetite increases with water tempera-

ture and decreases with fish size (Austreng et al. 1987).

Feed companies usually supply farmers with expected

amounts of feed under different water temperatures and

fish sizes (see above). The responsiveness to food varies

with the time of day and season (Kadri et al. 1991;

Jørgensen & Jobling 1992; Smith et al. 1993), and it may

be manipulated using artificial photoperiods (Taranger

et al. 1995; Nordgarden et al. 2003; Oppedal et al. 2003).

Although the feeding regime in general seems to have

little effect on growth and the feed conversion ratio

(FCR) (Sveier & Lied 1998), suppressed growth was seen

in the daily feeding regime of one meal compared with

eight meals in the period just following sea transfer

(Flood et al. 2011). Today, many Salmon farmers use a

camera positioned beneath the feeding area, looking up,

to assess appetite levels; when the farmer sees pellets

reaching down to the camera the feeding is turned off.

Prolonged (weeks to months) poor appetite is clearly

indicative of negative performance ()2) and illness ()3),

and good appetite suggests demand (3) and positive

performance (3). For practical application in the SWIM

1.0-model, we suggest dividing the Appetite WI intro

three levels: (1) good appetite, (2) as expected and (3)

poor appetite and calculate a WF of 11 (Eqn 2, Table 4).

Sea lice

Farmed Atlantic salmon are parasitized by two species of

sea lice; Lepeophtheirus salmonis (salmon lice) and, to a

lesser extent, Caligus elongates (e.g. Pike & Wadsworth

1999). Salmon respond to a sea lice infestation with pri-

mary stress responses including elevated blood cortisol

and glucose (Bowers et al. 2000; Finstad et al. 2000).

These stress responses occur even though at the infective

copepod stage the lice do not yet feed on the salmon (e.g.

Finstad et al. 2011). Grimnes and Jakobsen (1996) and

Finstad et al. (2000) did not find severe effects on the fish

from extreme infections of sea lice (>1 lice cm)2 fish or

>100 lice fish)1) at the copepod and early chalimus

stages, but they did find a sudden increase in mortality

after the appearance of the pre-adult stages. Responses to

an infestation of pre-adult and adult sea lice include pri-

mary stress responses, inflammatory responses, changes in

appetite, changes in the skin and gills, compromised

immunity, delayed healing of injuries, osmotic problems

and tissue self-destruction (Nolan et al. 1999; Bowers

et al. 2000; Finstad et al. 2000; Ross et al. 2000; Boxaspen

2006; Skugor et al. 2008). Sea lice initiate short term

physiological effects for the host already at 0.01 lice cm)2

fish and long term effects at 0.05 lice cm)2 fish (Nolan

et al. 1999). Grimnes and Jakobsen (1996) found that

more than 0.15 lice cm)2 fish was lethal, but indicated

that the actual mortality limit probably is lower. An

extensive 10 year sampling of wild Atlantic salmon in the

Norwegian sea revealed no fish carrying more than 10

adult lice (Holst et al. 2003). Since a wild smolt leaving

the coast has a weight of about 15 g (Finstad et al. 2000)

or surface area (including fins) of 95 cm)2 (Tucker et al.

2002: fish surface area (cm2) = 0.6131*fish weight

(g) + 86.144), this implies an upper limit of

0.12 lice cm)2 fish.

Infestations of more than 0.12 lice cm)2 fish are lethal

for the fish (knockout), at lower levels >0.05 lice cm)2

fish the fish will increasingly suffer from illness ()3), pain

()1), activation of the HPI ()1) axis, reduced survival

()3) and negative performance ()2) (Table 4). We sug-

gest five levels for the sea lice WI (Table 4), from no lice

as level 1 (positive performance (1)), via light infestation

as level 2 (only Copepod and Chalimus stages and ⁄ or

<0.05 lice cm)2 fish for the pre-adult and adult stages),

to ‡0.08 adult or pre-adult lice cm)2 fish as level 4

(Table 4) and calculate a WF of 11 (Eqn 2, Table 4).

Condition factor

Condition factor (K) is a standard measurement of fish

nutritional status (Bolger & Conolly 1989; Nash et al.

2006) and is calculated as K = (WL)3)100, where W is

the weight in g and L is the length in cm. In general

terms, a skinny salmon may have a K < 0.9 and a fat fish

a K of 1.5 (Tvenning 1991). During the production cycle

K changes from just above 1 as smolt (O’Flynn et al.

1997; Mørkøre & Rørvik 2001; Oppedal et al. 1999, 2006;

Fjelldal et al. 2009a, b) to 1.6 nearer slaughter (Oppedal

et al. 1997, 1999, 2006; Einen et al. 1998; Rørå et al.

1998; Mørkøre & Rørvik 2001) but this may partly be

overruled by season phase and delayed by artificial pho-

toperiods (Oppedal et al. 1997, 1999, 2003, 2006; Fjelldal

et al. 2009a, b). Generally, K decreases during winter and

spring, and increases during summer and autumn. Peri-

ods of good growth typically increase K (Juell et al. 1994;

Endal et al. 2000), while periods of poor growth reduce K

(e.g. Juell et al. 1994; Einen et al. 1999). Also, sea transfer

as either spring or autumn smolts may interfere with the

seasonal pattern (Mørkøre & Rørvik 2001), but not
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inevitably (Fjelldal et al. 2009a). Farmed fish display

higher K compared with hybrid and wild salmon given

similar farming conditions (Fjelldal et al. 2009a). There is

a strong and significant positive correlation between K

and total lipid content in Atlantic salmon (Herbinger &

Friars 1991; Einen et al. 1998, 1999; Rørå et al. 1998;

Hamre et al. 2004; Peterson & Harmon 2005). K is nega-

tively correlated with plasma glucose and cortisol (Turn-

bull et al. 2005). Very high K (>1.6) indicates spinal

deformation (Gjerde et al. 2005; Witten et al. 2005; Berg

et al. 2006; Fjelldal et al. 2009b; Hansen et al. 2010), but

the specific level at which this may occur is difficult to fix

due to the variations discussed above. However, within a

population, low K individuals tend to be emaciated

fish while ‘normal’ K values indicate good health, and

very high K values often indicate deformed individuals.

We propose to divide the condition factor WI into

three levels: (1) >1.1, (2) 0.9–1.1, and (3) <0.9. Salmon

with K above 1.1 have lipid reserves indicating positive

performance (3), while salmon with K below 0.9 and 1.1

have negative performance ()2) and activation of the

HPI ()1) axis. Extreme high K (>1.6) may be indicative

of malformation, but this is addresses by the vertebral

deformities WI (see below) and need therefore not be

considered here. Similarly, for extreme low K which is

addressed by the emaciation state WI (see below). The

WF was calculated as 6 (Eqn 2, Table 4).

Emaciation state

Fish may become emaciated due to disease (Stephen &

Ribble 1995; Kent & Poppe 2002), poor smoltification

(Duston 1994), ‘wrong’ feeding strategy (at transfer some

fish may start to eat zooplankton instead of pellets) (pers.

obs.; wild smolt: Rikardsen et al. 2004), sea lice (e.g. Fins-

tad et al. 2011), stress (e.g. Huntingford et al. 2006) and

social constraints (Jobling & Reinsnes 1986; Adams et al.

2000). Emaciated fish are generally small, very thin fish of

poor health, and they may act as a vector for introducing

disease to the other (more healthy) fish in the cage. As

they are feeding poorly, or not at all, it is difficult to treat

them orally (Coyne et al. 2006). Emaciated fish are well

known to fish farmers (Stien et al. 2009; Anon 2011b),

but there is little published research on the subject. A

study using Floy anchor tags on farmed chinook salmon

(Oncorhynchus tshuwytscha) individuals that could be cap-

tured with a dip net from the surface, showed that these

were mainly emaciated and moribund fish (62% died

within 24 h) (Stephen & Ribble 1995). Characteristic of

these fish were obvious pathological and clinical abnor-

malities (95% of 366 individuals exhibited gross and ⁄ or

histopathological abnormalities), and behavioural abnor-

malities such as swimming into the nets or in circles,

swimming separated ⁄ apart from the main group, and

staying at the surface for prolonged periods of time.

We propose to divide the emaciated state WI into

three levels: (1) not emaciated, (2) potentially emaciated

and (3) distinctly emaciated (Table 4). No sign of emaci-

ation is evidence of a healthy fish, i.e. positive perfor-

mance (1). An emaciated fish is very ill and moribund. A

positive identification of an emaciated fish is therefore a

knockout level for that individual fish. A potentially ema-

ciated fish is a fish showing signs of abnormal behaviour

()3), negative performance ()3) and illness ()3), and is

likely to have reduced survival ()3) and experience pain

()3). Based on this we calculated a WF 16 (Eqn 2,

Table 4).

Vertebral deformation

The main vertebral deformity in Norwegian salmon farms

is pronounced compression of the vertebral column and

reduced fork length, commonly referred to as ‘short-tail’

(Gil-Martens 2010). Multiple causes of vertebral deformi-

ties have been identified such as environmental condi-

tions during egg incubation (Wargelius et al. 2005), fish

size and temperature at vaccination (Berg et al. 2006),

type of vaccination (Aunsmo et al. 2008b), mineral nutri-

tion (Fjelldal et al. 2008, 2009b), use of underyearling

smolt (Fjelldal et al. 2006) and temperature at transfer to

sea water (Grini et al. 2011). The prevalence of one or

more vertebral deformities determined by radiology in

harvest sized salmon have been reported in the range of

6.6–73.3% (Witten et al. 2005; Fjelldal et al. 2007, 2009a,

b; Korsøen et al. 2009). Hansen et al. (2010) found that a

low severity of deformed vertebrae (<6 vertebrae com-

pressed) has little effect on growth, but individuals with

more than 10 deformed vertebrae were shorter and had a

higher condition factor than normal fish, while fish with

more than 20 deformed vertebrae in addition showed

lower weight than normal fish. Aunsmo et al. (2008b)

reported that fish with high intra-abdominal lesion scores

also more frequently had vertebral deformities and

weighed 62% of non-deformed fish at slaughter.

Dependent on the severity of deformation, external

examination is a less sensitive method of assessment than

radiology, the prevalence has, for example, been assessed

as 1.3% vs. 12.4% (Fjelldal et al. 2007) and 13–17% vs.

88–94% (Grini et al. 2011). Since this version of the

SWIM-model is aimed at fish farmers the vertebral defor-

mation WI must be judged by external examination of

the individual fish. We therefore suggest dividing the WI

into three levels: (1) no external signs of vertebral defor-

mity, (2) ‘short tail’ of normal weight, (3) ‘short tail’ of

low weight compared with the rest of the population.

Level 1 is linked with positive performance (1), while
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level 3 indicates negative performance ()3), pain ()3)

and illness ()3) this gives a WF of 10 (Eqn 2, Table 4).

Sexual maturity stage

Sexual maturation leads to allocation of energy towards

gonad build-up and migration. Prior to upstream migra-

tion wild salmon have an energy loss of about 60% of

their body reserves (Jonsson et al. 1997; Fleming 1998).

In the wild few survive to breed another year (Fleming

1998). Consequently, sexual maturation is detrimental for

salmon production, where artificial photo-regimes are

used to prevent maturation (e.g. Oppedal et al. 2011a).

Sexually mature parr, precocious males, can be present at

sea transfer and their presence is linked to increased mor-

tality (Aunsmo et al. 2008a). The energy expended for

maturation and spawning increases with fish size and

females also expend more energy on gonads compared

with males (ca 28% vs. ca 4% of total energy reserves,

Fleming 1998). Whether mature salmon have a behavio-

ural need to carry out spawning migration is difficult to

answer (cf. Huntingford et al. 2006), but it is plausible

that there is an increase in aggression (Fleming & Einum

2011). With regard to altered osmoregulation in adapta-

tion to a hypo-osmotic environment before re-entering

freshwater in nature, Persson et al. (1998) found that sal-

mon caught in the estuary (before entering the river) had

already adapted to a hypoosmotic environment and that

during the upriver migration the gill Na+, K+-ATPase

activity decreased even further. It is therefore plausible

that mature salmon in sea cages to some extent experi-

ence osmoregulatory challenges. Besides the energy drain-

ing effects of maturation, it has been shown that

compared with immature fish mature salmon have a

higher prevalence of the parasite Kudoa thyrsites, that is a

cause of post mortem soft flesh (St-Hilaire et al. 1998).

Mature females have invested heavily in the develop-

ment of gonads and show negative performance ()3) and

ultimately reduced survival ()3). Mature males and espe-

cially mature juvenile males invest less. Maturity linked

aggression ()2) may also reduce welfare. No maturation

is presumed to give a positive performance (1). We pro-

pose dividing the sexual maturity stage WI into four lev-

els and calculate a WF of 9 (Eqn 2, Table 4).

Smoltification state

During the smoltification process salmon parr develop

tolerance for high salinity, enabling the young salmon

(now called smolt) to enter seawater with only minor dis-

turbances in osmotic balance (e.g. Stefansson et al. 2008;

Thorstad et al. 2011). The physiological disturbances

during exposure to seawater (33 ppt) are greater at high

temperatures (>14�C) compared with intermediate

temperatures (10�C), while low temperatures (<7�C) may

lead to a prolonged period of osmotic stress and

increased mortality (Sigholt & Finstad 1990; Arnesen et

al. 1998; Handeland et al. 2000, 2003). For intermediate

water temperatures (which are best for welfare) transfer

of salmon to full strength seawater before the smoltifica-

tion process has completed resulted in high mortality

(>40%) and stunted growth rates for a period of

1–2 months (Duston 1994), but when transferred to

brackish water (20 ppt) mortality was <10% and only

temporarily stunted growth rates were observed, and with

even less saline water (10 ppt) little to no mortality

occurred and no stunting of growth compared with parr

continuing in freshwater (Bjerknes et al. 1992; Duston

1994). For fully smoltified fish there is little effect of

salinity on growth rate and mortality (Duston 1994).

Fully smoltified fish have few problems with osmoregu-

lation in full strength seawater (positive performance (1)).

Impaired smolts have negative performance ()3) and

reduced survival ()5), especially at low temperatures

(<7�C), and knockout for high temperatures (>20�C).

This gives six WI levels from worst (incomplete smoltifi-

cation at high temperature) to best (fully smoltified) and

a WF of 9 (Eqn 2, Table 4). As this is a farmer’s version

of SWIM, the smoltification state must be judged based

on the colouration and shape of the fish. Fully smoltified

Atlantic salmon have lost their distinctive parr markings,

gained a more silvery colour and have a more streamlined

shape (Hoar 1988).

Fin condition

Fin erosion refers to damage to, and loss of, the tissue of

the rayed fins (Latremouille 2003) and is often found in

farmed salmonids. Being externally visible, fin damage

represents an intuitive and meaningful welfare indicator

easily recognized by farmers and informed consumers

(Ellis et al. 2008). While most studies on nociception in

fish have focused on the head region or the body, Cherv-

ova (1997) demonstrated experimentally that fish fins are

capable of nociception. Being live tissue capable of noci-

ception mechanical injury to fin tissue is probably associ-

ated with pain. In some cases, mechanical fin damage

may reflect aggressive behaviour within the rearing unit

(salmon parr: Turnbull et al. 1996, 1998; Jones et al.

2010). Damage to the fins of salmonids is, however, more

often caused by chronic infection with biofilm forming

bacteria that progressively necrotize the fin edges (Bernar-

det et al. 1998), similar to leprosy in humans not neces-

sarily being painful. Poor fin condition is coupled with a

high stocking density, poor water quality, decreased con-

dition factor and increased plasma glucose and cortisol
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levels (Turnbull et al. 2005; Adams et al. 2007). The fins

fulfil important functions in both locomotion and intra-

specific communication in salmonids (Abbott & Dill

1985; Pelis & McCormick 2003) and severe fin erosion

thus has the potential to affect behaviour. However, the

evidence is scarce or contradictory, and any functional

impairment following fin erosion has yet to be demon-

strated scientifically. The breakdown of the epithelial bar-

rier during active fin erosion may disrupt osmotic

homeostasis and can thus cause severe stress in the fish

(Clayton et al. 1998).

Fin damage represents injury to live tissue with the

potential for inflammation and pain ()5). Damaged epi-

thelial structures may also represent invasion routes for

pathogens and thus lead to illness ()3) and negative per-

formance ()2). We propose to divide the fin condition

WI into four levels ranging from normal healthy fins

(positive performance (3)) without tissue loss to severely

damaged fins with tissue loss, which also may be suffering

from necrosis, inflammation, bleeding or exposed fin rays

(Table 4). The WF calculated in SWIM 1.0 is 13 (Eqn 2,

Table 4).

Skin condition

The integrity of the skin-scale complex provides a relatively

impermeable barrier to water and electrolytes. Epidermal

damage such as scale loss, wounds and ulcers can therefore

result in a loss of body water and changed ion balance,

which produces an osmotic stress that potentially can be

life threatening (Bouck & Smith 1979). There is evidence

that ulceration of as little as 10% of the body surface area

can result in high acute mortality and that the degree of

mortality is directly related to the amount of skin damage

(Bouck & Smith 1979). Sub-lethal skin damage might affect

the fish energy budget due to increased metabolic cost

involved in wound repair, and osmoregulatory perturba-

tions. Such chronic effects can affect growth rates and

fecundity negatively; it may also lead to an increased sus-

ceptibility to other diseases (Noga 2000). Many situations

or management procedures in salmon aquaculture are

associated with a high risk for mechanical damage to the

skin. Examples are transport, sorting, vaccination, pump-

ing, strong currents and high densities of fish, jelly fish

burns, parasites, attack from other fish and predators

(Noble et al. 2012). Virus- or bacterial infections can often

also constitute the underlying cause of skin necrosis or

ulcerations in fish. In sea farmed Atlantic salmon several

infections are associated with severe or even pathognomic

cutaneous symptoms, i.e. winter ulcer disease (infection

with Moritella viscosa; Lunder et al. 1995; Benediktsdóttir

et al. 2000), atypical furunculosis (atypical Aeromonas sal-

monicida infections; Wicklund & Dalsgaard 1998), Pisci-

rickettsiosis (Mauel & Miller 2002) and salmon anaemia

(Totland et al. 1996). Several bacteria in the class Flexibac-

teriae often cause skin lesions and fin erosion in both fresh-

water or seawater reared fish (Bernardet 1998; Lorenzen

1999) and it has been shown that many fish pathogenic

bacteria secrete proteolytic enzymes that cause massive tis-

sue damage (Leung & Stevenson 1988; Ostland et al. 2000).

It should also be mentioned that the skin provides a first

line of defence against pathogens (Segner et al. 2012),

where the skin mucus prevents aggregation of pathogens

by being continuously replenished and by containing vari-

ous immune factors (Shepard 1994). Epidermal damage

such as wounds and non-intact mucus layers therefore

represent invasion routes for virus and bacteria (Svendsen

& Bøgwald 1997).

Similar to the fin condition WI damage to the skin

may cause pain ()5) and represent invasion routes for

pathogens leading to infection and illness ()3) and possi-

bly reduced survival ()3) in salmon. Even smaller skin

damages may lead to long term negative performance

()3) due to increased metabolic cost involved in wound

repair and osmoregulatory perturbation. Both the size of

the affected area and the depth (whether it is penetrating

or superficial) of skin damage will probably contribute to

the severity of the condition. Thus, the indicator is

divided into five levels (Table 4) ranging from normal

healthy skin (positive performance (1)) to penetrating

and ⁄ or multiple wounds or ulcers that also may be

infected, plus a knockout level for large open wounds.

The WF calculated in SWIM 1.0 is 15 (Eqn 2, Table 4).

Final model

The final step of the semantic modelling procedure

(Bracke et al. 2002b) is to assemble the WIs, the levels

and their associated ranks into an OWA-model using the

following three formulae for calculating the relative

weighting factors (RWFs), indicator welfare scores (IWSs)

and the overall welfare index (OWI):

RWFi ¼WFi �
Xm

j¼1

WFj

 !�1

ð3Þ

IWSi ¼ ISi � RWFi ð4Þ

OWI ¼
Xm

j¼1

IWSj ð5Þ

where m is the total number of indicators in the model,

WFi and WFj (see Eqn 2) are the weighting factors of the

respective indicator i and j, and ISi (see Eqn 1) is the

indicator score given by the assessor (the fish farmer) for

indicator i. In the case of one or more knockout levels
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the OWI is defined as 0. Knockout levels are not included

when calculating RWFs and IWSs.

Although, we originally intended that the WIs should

be at the sea cage level, the literature reviews made clear

that the research on many of the WIs predominantly or

exclusively were based on analysis of their effects on indi-

vidual fish. For example, not the prevalence of sea lice

infested fish in a sea cage and the effect on the overall

fish welfare in the cage, but the effects on the welfare of

individual fish from different sea lice infestation ratios.

We therefore divided the indicators into sea cage specific

WIs: temperature, salinity, oxygen saturation, water cur-

rent, stocking density, lighting, disturbances, daily mortal-

ity ratio and appetite and individual fish specific WIs: sea

lice infestation ratio, body condition, emaciation state,

vertebral deformation, maturation stage, smoltification

state, fin condition and skin condition (Table 4). Table 5

shows the RWFs for the sea cage and individual fish spe-

cific WIs. These RWFs together with their levels and their

ISs in Table 4 give a model (or schema) for calculating

an OWA score for a sea cage and for individual fish. The

first gives an overall score for the welfare conditions in

the sea cage, while the second give scores for the respec-

tive fishes. We call the model Salmon Welfare Index

Model 1.0, abbreviated SWIM 1.0. 1 states that it is the

farmer’s version and .0 states that this is the pilot version

which may be revised and upgraded later.

Example scenario

This scenario is based on a real world example from a sea

farm in Western Norway, autumn 2011. The sea cage was

157 m in circumference, fitted with a 35 m deep cone-

shaped net containing 140 000 fish with an average

weight of 2.3 kg and average length of 55 cm. The water

temperature was 14�C, 33 ppt salinity from top to bot-

tom, oxygen saturation was 50% in large parts of the

water column, the water current varied between 3 and

12 cm s)1 (i.e. between 0.05 and 0.22 BL s)1), stocking

density at about 14 kg m)3, no artificial lighting, only

light disturbances, mortality at 0.11% and the farmer

reported poorer appetite than expected. Using the sea

cage WIs from Table 4 this gives an OWI for the sea cage

of 0.37 (Eqn 5, Table 6), on a scale from 0 to 1, where 0

is worst and 1 is best welfare. The low OWI indicates low

fish welfare. This was affirmed 2 days later when the

farmer collected more than 3300 dead fish, i.e. 2.36% of

the fish in the cage. This is a knockout value and if the

assessment had been performed on the sea cage that day,

the OWI would have been set to 0.

For the individual fish specific indicators, an OWA will

be based on a representative sample of fish from the cage,

but as an example we only look at one imagined repre-

sentative fish in the current scenario. Figure 1 shows a

salmon with no lice, a K of 1.21 (1.6 kg and 51 cm), not

emaciated, no external signs of deformity, moderate split-

ting of the fins and a normal healthy skin. This specific

fish gets an OWI of 0.90 (Eqn 5, Table 7) on a scale from

0 worst to 1 best possible welfare score.

Table 6 SWIM 1.0 applied on the sea cage in the example scenario.

The OWI is the sum of the IWS (Eqn 5)

Sea cage WIs RWF # Level IS IWS

Temperature (�C) 0.17 1 10–15 1.00 0.17

Salinity 0.03 2 No access to

brackish water

0.00 0.00

Oxygen (%) 0.18 3 40–60% (�12�C) 0.00 0.00

Water current

(BL s)1)

0.03 1 <0.9 1.00 0.03

Stocking density

(kg m)3)

0.09 1 <22 1.00 0.09

Lighting 0.04 2 Suboptimal 0.00 0.00

Disturbances 0.12 2 Light 0.67 0.08

Mortality (% day)1) 0.22 5 At or above the 90

percentile curve

0.00 0.00

Appetite 0.12 3 Poor appetite 0.00 0.00

OWI 0.37Table 5 Relative weighting factors for the sea cage specific WIs and

for the individual fish specific WIs in SWIM 1.0

Sea cage WIs WF RWF Individual fish WIs WF RWF

Temperature (�C) 16 0.17 Sea lice 11 0.12

Salinity 3 0.03 Condition factor 6 0.07

Oxygen (%) 17 0.18 Emaciation state 16 0.18

Water current (BL s)1) 3 0.03 Vertebral deformation 10 0.11

Stocking density

(kg m)3)

8 0.09 Sexual maturity stage 9 0.10

Lighting 4 0.04 Smoltification state 9 0.10

Disturbances 11 0.12 Fin condition 13 0.15

Mortality (% day)1) 21 0.22 Skin condition 15 0.17

Appetite 11 0.12

SUM 94 1.00 89 1.00

Figure 1 Image of the fish used in the example scenario. This fish

had an OWI of 0.90 on a scale from 0 worst to 1 best possible wel-

fare score (Table 7).
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Combining the score of the sea cage and the score of the

individual ‘representative fish’ results in an OWI (Eqn 5)

given as OWI = (0.37*94 + 0.90*89) ⁄ (94 + 89) = 0.62. The

conclusion is that the fish welfare at the time of sampling

was mediocre. The example representative fish was still fit,

but the conditions in the sea cage were very poor.

First sampling using SWIM 1.0

This is the first actual sampling using the SWIM 1.0 model.

The sampling was done at a sea farm in Western Norway,

winter 2012. The sea cage was 157 m in circumference, fit-

ted with a 45 m deep cone-shaped net containing 100 000

fish with an average weight of 5.8 kg and average length of

79 cm. The water temperature was 7�C, 33 ppt salinity and

100% oxygen saturation from top to bottom of the cage,

the water current at the surface varied between 6 and

36 cm s)1 (i.e. between 0.07 and 0.38 BL s)1), the stocking

density was at about 20 kg m)3, artificial lighting posi-

tioned at 10 m depth, recent severe disturbances occurred

when 30 000 fish were harvested from the cage, the mortal-

ity was at about 0.01% and the farmer reported poorer

appetite than expected. Using the sea cage WIs from

Table 4 this gives an OWI for the sea cage of 0.59 (Eqn 5,

Table 8), on a scale from 0 to 1.

Ten fish were sampled for the individual fish specific

indicators. Details for each of the sampled fish (weight,

length, condition factor and number of pre- and adult lice)

are given in Table 9, together with the assigned WI levels

and calculated OWIs. The OWIs varied from a minimum

of 0.00 (emaciated fish, Fig. 2) to a maximum of 0.88

Table 7 SWIM 1.0 applied on the fish from the example scenario.

The OWI is the sum of the IWS (Eqn 5)

Individual fish WIs RWF # Level IS IWS

Sea lice 0.12 1 No lice 1.00 0.12

Condition factor 0.07 1 1.0–1.5 1.00 0.07

Emaciation state 0.18 1 Not emaciated 1.00 0.18

Vertebral

deformation

0.11 1 No external signs

of v. deformities

1.00 0.11

Sexual maturity stage 0.10 1 Not mature 1.00 0.10

Smoltification state 0.10 1 Fully smoltified 1.00 0.10

Fin condition 0.15 3 Moderate splitting 0.33 0.05

Skin condition 0.17 1 Normal healthy skin 0.00 0.17

OWI 0.90

Table 8 Results from the first SWIM 1.0 sampling of a commercial

salmon sea cage. The OWI is the sum of the IWS (Eqn 5)

Sea cage WIs RWF # Level IS IWS

Temperature (�C) 0.17 2 7–10 0.75 0.13

Salinity 0.03 2 Adult fish with no

access to brackish water

0.50 0.02

Oxygen (%) 0.18 3 >80%, all temperatures 1.00 0.18

Water

current (BL s)1)

0.03 1 <0.9 1.00 0.03

Stocking

density (kg m)3)

0.09 1 <22 1.00 0.09

Lighting 0.04 1 Optimal 1.00 0.04

Disturbances 0.12 2 Severe 0.00 0.00

Mortality (% day)1) 0.22 3 At the benchmark curve 0.50 0.11

Appetite 0.12 3 Poor appetite 0.00 0.00

OWI 0.59

Table 9 SWIM 1.0 applied on 10 fish from the first SWIM 1.0 sampling The OWI for each fish is the sum of the IWS for the respective WI levels

(Eqn 5)

Details

Details for fish 1–10

1 2 3 4 5 6 7 8 9 10

Weight (kg) 6.20 5.85 9.00 2.90 8.25 8.55 5.90 7.16 8.50 1.05

Length (cm) 79 77 82 70 85 87 83 84 85 54

Condition factor 1.26 1.28 1.63 0.85 1.34 1.30 1.03 1.21 1.38 0.67

Number of lice (#) 4 0 4 4 5 11 7 7 7 45

Individual fish WIs

WI levels for fish 1–10

1 2 3 4 5 6 7 8 9 10

Sea lice 2 1 2 2 2 2 2 2 2 3

Condition factor 1 1 1 3 1 1 1 1 1 3

Emaciation state 1 1 1 2 1 1 1 1 1 3

Vertebral deformation 1 1 1 1 1 1 1 1 1 1

Sexual maturity stage 1 1 1 3 1 3 1 1 1 1

Smoltification state 1 1 1 1 1 1 1 1 1 1

Fin condition 3 4 2 2 3 2 3 3 2 2

Skin condition 3 5 3 1 3 1 3 5 2 4

OWI 0.79 0.72 0.84 0.59 0.84 0.84 0.79 0.73 0.88 0.00
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(Fig. 3); median OWI for the ten fish was 0.79. As a further

example, fish number 2 is shown in Figure 4. This fish was

clearly damaged during the recent harvesting of fish from

the sea cage and got an OWI of only 0.72 due to the low

skin and fin indexes (Table 9). Combining the score of

the sea cage and the median score of the individual fish

gives a total OWI = (0.59*94 + 0.79*89) ⁄ (94 + 89) = 0.69

(Eqn 5).

Discussion

Methodology

The objectives of this paper were to review basic welfare

indicators of sea-cage farmed Atlantic salmon and to gen-

erate a semantic model (SWIM 1.0) to enable farmers to

assess overall welfare. Although there are many papers

published on semantic modelling and on welfare assess-

ment in various species of farm animals, this is the first

time a systematic review of scientific statements has been

performed and presented on farmed fish. A main advan-

tage of reviewing welfare indicators according to the prin-

ciples of semantic modelling is that it gave focus to the

review, as it was necessary to assess each indicator in

terms of what the indicator itself tells about salmon wel-

fare. This prevented long and overlapping essays about

each indicator; special cases, and interactions that are an

inherent part of a complex problem area such as fish wel-

fare in sea cages.

In order to create an overall model it is necessary to

reduce complexity. The advantage of the transparency in

semantic modelling is that it shows where these reductions

are made and where there is scope for further upgrading

with new scientific knowledge. Semantic modelling also

supports transparency of the model itself, allowing criti-

cism of underlying principles and specific choices made.

The semantic-modelling procedure used in SWIM 1.0

was derived from Bracke et al. (2002b) and De Mol et al.

(2006). It started with an extensive literature review for

statements that are somehow relevant for the welfare of

Atlantic salmon farmed in sea cages. This ensures that the

formulation of WI-levels and the calculation of WFs are

done in relation to unbiased scientific statements, i.e.

statements that have not been produced in order to con-

firm preconceived notions of the importance of different

WIs and how welfare should be assessed.

A major criticism of semantic modelling is that it is

subjective; i.e. one has to decide on how to divide the

indicators into levels, which weighting categories are

appropriate for each indicator and one must assign indi-

cator and weighting scores. These decisions are indeed

based on a partly subjective interpretation of the meaning

of the collected scientific information. This subjectivity is,

however, decreasing with increasing quality and the

amount of available scientific information; more solid

data reduces the freedom of the interpretation of the

data. The model and the semantic-modelling procedure

itself are objective, i.e. the information is scientifically

Figure 3 Image of fish number 9 from the first sampling. This fish

had an OWI of 0.88 on a scale from 0 worst to 1 best possible wel-

fare score (Table 9).

Figure 4 Image of fish number 2 from the first sampling. This fish

had clearly been injured during the recent harvesting of fish from the

cage and had an OWI of 0.72 due to the low skin and fin indexes

(Table 9).

Figure 2 Image of fish number 10 from the first sampling. This fish

had an OWI of 0.00 on a scale from 0 worst to 1 best possible wel-

fare score (Table 9).
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valid and the semantic-modelling procedure is formalized

and has been described and validated in detail elsewhere

(Bracke et al. 2002b, 2008; Bracke 2008, 2011). It is

designed to take the modeller’s point of view, as much as

possible, out of the equation (Bracke et al. 2002b; Bracke

2008; Bracke et al. 2008).

The model

This is the first time semantic modelling has been used to

create OWA for fish and, although there are several risk

assessment schemas for fish farming, there are to our

knowledge no schemas for assessing fish welfare. As the

SWIM 1.0 model is based on an extensive review of the lit-

erature, including the mentioned risk assessment schemas,

it would be a circular argument to compare the model with

the literature and risk assessment schemas. Based on our

expertise, however, we believe that the scoring in SWIM

1.0 has sufficient validity for fish farmers to start using the

model. It is, for example, generally agreed that daily mor-

tality is probably one of most important WIs for fish in sea

cages and that salinity probably is one of the least impor-

tant. That said, however, it is anticipated that the model

will need further maturation and upgrading. It is also

important to note that although the SWIM 1.0 model gives

OWIs as output, its main purpose is its use as a diagnostic

tool to identify indicators of reduced welfare and which the

fish farmer should address in order to improve fish welfare.

The next step is to visit several farms and at different times

of the production in order to test and calibrate the model,

and to gain an overview of how fish welfare varies in com-

mercial sea cages. These will be very extensive studies that

warrant their own publication.

We must again emphasize that this is the first version

of the model and by its inherent transparency it is open

for further upgrading. We hope that readers will have

many suggestions for how the model can be improved,

for example new WIs, WIs that can be removed, more

precise WI-levels, criticism on specific weightings and

choices made, studies that should be included as part of

the background knowledge database etc. Finally, we plan

to make additional SWIM models adapted for use by

farm veterinarians (SWIM 2) and fish welfare experts

(SWIM 3), where we can use more advanced WIs that

require specific expertise or equipment. The goal is that

the fish welfare community can build on the SWIMs and

in time reach a consensus on how to best assess overall

fish welfare in sea cages.
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