The surveillance and control programme for *Echinococcus multilocularis* in red foxes (*Vulpes vulpes*) in Norway in 2015.
Title:
The surveillance programme for *Echinococcus multilocularis* in red foxes (*Vulpes vulpes*) in Norway in 2015.

Authors:
Knut Madslien, Charles Albin-Amiot, Malin E Jonsson, Torill Clausen, Kristin Henriksen, Inger Sofie Hamnes, Anne Margrete Urdahl, Berit Tafjord Heier, Øivind Øines, Heidi L. Enemark

Date: 2016-05-10

Any use of the present data should include specific reference to this report.

Example of citation:

© Norwegian Veterinary Institute 2016
The surveillance programme for *Echinococcus multilocularis* in red foxes (*Vulpes vulpes*) in Norway in 2015

Knut Madslien, Charles Albin-Amiot, Malin E Jonsson, Torill Clausen, Kristin Henriksen, Inger Sofie Hamnnes, Anne Margrete Urdahl, Berit Tafjord Heier, Øivind Øines, Heidi L. Enemark

*Echinococcus multilocularis* was not detected in any of the 523 red foxes (*Vulpes vulpes*) examined during the licensed hunting season in 2015. Thus, so far *E. multilocularis* has not been detected in any of the 4462 foxes that have been tested since the surveillance was initiated in Norway in 2002.

Introduction
The dwarf fox tapeworm *Echinococcus multilocularis* is endemic in large parts of the northern hemisphere, including eastern and central parts of Europe (1, 2). During the past decades, prevalence of *E. multilocularis* in Europe has increased in the known endemic areas (3), and the geographic distribution has expanded to regions where the parasite was not previously detected (4). In 1999, *E. multilocularis* was detected for the first time in Denmark (5) and on the high-arctic Norwegian islands of Svalbard (6). Yet, prior to the detection of *E. multilocularis* in Sweden in February 2011 (7) there was no evidence of its presence in mainland Fennoscandia (8). Despite analyses for *E. multilocularis* of more than 3000 foxes/fox scats since 2002 (9), the parasite has not been detected in mainland Norway so far.

Anthrelmintic treatment of dogs, prior to import, is compulsory to prevent introduction of the parasite from endemic EU regions. However, according to the EU Directive 998/2003/EC on pet movement, the maintenance of this national regulation post 2008 requires documentation of an *E. multilocularis* - free status within Norway.

Aim
The aim of the programme is to document freedom of *E. multilocularis* in mainland Norway.

Material and methods
Faecal samples collected from red foxes shot during the licensed hunting season in 2015 (i.e. January to mid-April and mid-July to late December) were included in the surveillance 2015.

All counties in Norway were represented in the sampling regime. Hunters who have provided samples previous years were invited to participate (n=157) and in addition samplers were requested on our homepage. A standard form including information on where and when the fox was hunted, sex (male or female) and estimated age of the animal (juvenile or adult), was completed by each hunter. In addition, faecal samples from wolves (*Canis lupus*) killed legally or illegally during 2015 were included in the surveillance 2015.

The DNA-fishing method combined with realtime PCR detection, was used for the detection of *E. multilocularis* in the faecal samples. This involves magnetic capture DNA extraction from samples by applying specific DNA-hybridisation, followed by extraction using streptavidin coated magnetic beads and finally detection by realtime PCR (10, 11). The DNA-fishing method is capable of detecting *E. multilocularis* DNA from adult worms as well as eggs. These methods are targeted for use during the patent phase of the infection when DNA from the eggs is shed in the faeces. This period constitutes roughly two-thirds of the total infection period. The combination of these methods is more sensitive than the previously used method: egg isolation by sieving followed by detection of parasite DNA using a multiplex PCR (10, 11). Validation of the current methods in our laboratory has demonstrated a sensitivity around 1 egg per 3 g of faeces (Heidi Enemark, personal communication).

A total of 523 samples were analysed individually (3 g faeces per sample). Realtime PCR detection was performed in duplicate. We assumed a test sensitivity of 63% (10) and a fox population of 151,000 (Olav Hjeljord, Norwegian University of Life Sciences, personal communication). However, the true test sensitivity is probably higher and most likely close to the Swedish method (88% test sensitivity) (10, 12). The apparent prevalence and corresponding confidence interval were estimated using the function epi.prev in package epiR performed in R version 2.6.2 (13). The conservative 63% sensitivity and a specificity of 1 were used for calculating the apparent prevalence.
Results
A total of 524 samples were collected in 2015 of which 523 were suitable for examination (Figure 1). In addition, four samples from wolves (*Canis lupus*) were examined (Table 1). All samples were negative for *E. multilocularis* giving an estimated apparent prevalence of 0% (0 - 0.7%, 95% confidence interval).

In the years 2002 - 2015, a total of 4 462 red fox faecal samples from mainland Norway have been tested for *E. multilocularis* (Table 1).

Table 1. Number and county of the red foxes, and wolves, sampled and examined for *Echinococcus multilocularis* in Norway during the red fox licensed hunting season in 2015 (January to mid-April and mid-July to late December) and corresponding numbers for the period 2002 - 2015.

<table>
<thead>
<tr>
<th>County</th>
<th>Number of red foxes tested</th>
<th>Other species tested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2015</td>
<td>Total 2002-2015</td>
</tr>
<tr>
<td>Østfold</td>
<td>91</td>
<td>528</td>
</tr>
<tr>
<td>Akershus</td>
<td>76</td>
<td>531</td>
</tr>
<tr>
<td>Oslo</td>
<td>12</td>
<td>94</td>
</tr>
<tr>
<td>Hedmark</td>
<td>110</td>
<td>743</td>
</tr>
<tr>
<td>Oppland</td>
<td>39</td>
<td>305</td>
</tr>
<tr>
<td>Buskerud</td>
<td>27</td>
<td>169</td>
</tr>
<tr>
<td>Vestfold</td>
<td>2</td>
<td>59</td>
</tr>
<tr>
<td>Telemark</td>
<td>18</td>
<td>179</td>
</tr>
<tr>
<td>Aust-Agder</td>
<td>3</td>
<td>89</td>
</tr>
<tr>
<td>Vest-Agder</td>
<td>3</td>
<td>65</td>
</tr>
<tr>
<td>Rogaland</td>
<td>7</td>
<td>87</td>
</tr>
<tr>
<td>Hordaland</td>
<td>6</td>
<td>149</td>
</tr>
<tr>
<td>Sogn og Fjordane</td>
<td>7</td>
<td>218</td>
</tr>
<tr>
<td>Møre og Romsdal</td>
<td>4</td>
<td>119</td>
</tr>
<tr>
<td>Sør-Trøndelag</td>
<td>22</td>
<td>349</td>
</tr>
<tr>
<td>Nord-Trøndelag</td>
<td>20</td>
<td>319</td>
</tr>
<tr>
<td>Nordland</td>
<td>5</td>
<td>122</td>
</tr>
<tr>
<td>Troms</td>
<td>42</td>
<td>207</td>
</tr>
<tr>
<td>Finnmark</td>
<td>29</td>
<td>130</td>
</tr>
<tr>
<td>Total</td>
<td>523</td>
<td>4 462</td>
</tr>
</tbody>
</table>

Figure 1. Map of Norway showing numbers and hunting municipality of red foxes sampled and examined for *Echinococcus multilocularis* during the red fox licensed hunting period in 2015.
Discussion

No faecal samples collected from Norwegian foxes during the surveillance programme in 2015 were positive by PCR for *E. multilocularis*, which is in agreement with results from previous years. According to requirements of Regulation (EU) No 1152/2011, Annex II, the pathogen-specific surveillance programme must be designed to detect a prevalence of ≤ 1% at confidence level of at least 95%.

The number of samples collected in Norway in 2015 was sufficient to document a current prevalence of *E. multilocularis* below 1%. However, increasing prevalence in nearby regions has increased the risk of introduction of the parasite to Norway. In Sweden, *E. multilocularis* has now been found in four different regions (9), and surveillance in Denmark has recently demonstrated its prevalence in a new region in Denmark (14). Furthermore, studies have shown the parasite to be wider distributed in the Baltics than previously anticipated leading to increasing numbers of alveolar echinococcosis in humans (15).

This is worrisome since Norwegian studies have exposed lack of compliance with the anthelmintic treatment requirements for pets entering the country from after having visited endemic areas (16, 17). As a consequence, an annual surveillance programme is necessary to document a continuous disease free status. Our findings support the maintenance of the national regulation for compulsory anthelmintic treatment of imported dogs to minimise the risk of *E. multilocularis* introduction to Norway.

References


13. R development Core Team. R: A language and environment for statistical computing 2008
http://www.R-project.org

14. Enemark HL, Al-Sabi MN, Knapp J, Staahl M, Chriel M. Detection of a high-endemic focus of
Echinococcus multilocularis in red foxes in southern Denmark, January 2013. Euro Surveill.


16. Davidson RK, Robertson LJ. European pet travel: misleading information from veterinarians and

17. Hamnes IS, Klevar S, Davidson RK, Høgåsen HR, Lund A. Parasitological and serological investigation
of samples from stray dogs imported into Norway from Eastern European countries [in Norwegian]. In
The Norwegian Veterinary Institute (NVI) is a nationwide biomedical research institute and Norway’s leading centre of expertise regarding biosafety in aquatic and terrestrial animals. The aim of the Institute is to become Norway’s contingency centre of preparedness for One Health.

The primary mission of the NVI is to give research-based independent advisory support to ministries and governing authorities. Preparedness, diagnostics, surveillance, reference functions, risk assessments, and advisory and educational functions are the most important areas of operation. The Institute has its main laboratory in Oslo, with regional laboratories in Sandnes, Bergen, Trondheim, Harstad and Tromsø, with about 330 employees in total.

www.vetinst.no

The Norwegian Food Safety Authority (NFSA) is a governmental body whose aim is to ensure through regulations and controls that food and drinking water are as safe and healthy as possible for consumers and to promote plant, fish and animal health and ethical farming of fish and animals.

We encourage environmentally friendly production and we also regulate and control cosmetics, veterinary medicines and animal health personnel. The NFSA drafts and provides information on legislation, performs risk-based inspections, monitors food safety, plant, fish and animal health, draws up contingency plans and provides updates on developments in our field of competence. The NFSA comprises two administrative levels, five regions in addition to the head office, and has some 1250 employees. The NFSA advises and reports to the Ministry of Agriculture and Food, the Ministry of Trade, Industry and Fisheries and the Ministry of Health and Care Services.

www.mattilsynet.no