Risk of disease transfer with wellboats in Norway

Mona Dverdal Jansen Norwegian Veterinary Institute AquaNor seminar, 19.08.2019

Photo: Arve Nilsen, NVI

Potential pathways for spread

- (Infected fish)
- Water
 - Transport water
 - Ballast water
 - Process water (for cleaning)
 - "Dead volume" spaces
- Biofilm
- Hull contamination

Major limitations

- No quantification of the risk
- Lack of data under field conditions
 - Pathogen survival
 - Minimum infectious dose
 - Washing & disinfection efficacy

Included in a broader context

"The increased and intensified official supervision of fish farms, wellboats, transport procedures, slaughterhouses, etc., have been important factors in the control of the disease." (ISA)

Epidemiological studies unable to conclude

- ISA risk higher with multiple smolt sources, particularly if from hatcheries outside own county
- "... may be explained by the spread of ISA during transportation, for example due to the transport vehicles used, than by a possible undiagnosed latent ISA in the smolt."

Suspicions rarely confirmed (or disproved)

"Possible introduction routes may be through transport of infected smolt, insufficient disinfection of wellboats, or transmission from a marine reservoir."

Suspicions rarely confirmed (or disproved)

- Furunculosis to northern Norway
 - Wellboat? Previous transport = slaughter transport of furunculosis infected fish
- ISA spread
 - Wellboat? Previous transfer = ISAV infected fish; ISAV isolates identical
- SAV spread to northern Norway

Norwegian Veterinary Institute

• Fish, transport water, wellboat?

Norwegian network-based simulation study

Aims:

- Use a network-based disease spread model (AIS data)
- Improve our understanding of SAV transmission dynamics in Norwegian aquaculture

A stochastic network-based model to simulate the spread of pancreas disease (PD) in the Norwegian salmon industry based on the observed vessel movements and seaway distance between marine farms

Sara Amirpour Haredasht^a, Saraya Tavornpanich^b, Mona Dverdal Jansen^b, Trude Marie Lyngstad^b, Tadaishi Yatabe^a, Edgar Brun^b, Beatriz Martínez-López^{a,*}

^a Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School Veterinary Medicine, University of California, Davis, CA, USA
^b Norwegian Veterinary Institute, Oslo, Norway

Dataset

- Sea sites
 - GPS coordinates
 - Weekly production status in 2016 (active/fallowed)
 - Date of SAV detection/PD diagnosis in 2016
- Shortest seaway distance between sites
- Vessels
 - AIS data
 - Contact points (≤ 100-200m to a sea site)

Photo: Mari Press, NVI

Method

- Monthly networks between sea sites (Jan – Dec 2016)
 - 1. Observed vessel movements
 - 2. Seaway distance to other active sites

• Definition of "high risk-contact"

- a) Vessels: SAV +ve site to SAV ÷ve site within 7 days
- b) Seaway distance from SAV +ve site to SAV ÷ve site (<5, <10, <20 km)

Results

- Index cases = 113 +ve sites
- Three models:
 - a) PD 231 SAV +ve sites
 - b) SAV2 88 SAV2 +ve sites
 - c) SAV3 144 SAV3 +ve sites

Results

- Index cases = 113 +ve sites
- Three models:
 - a) PD 231 SAV +ve sites
 - b) SAV2 88 SAV2 +ve sites
 - c) SAV3 144 SAV3 +ve sites

- Aquaculture-related vessel movements: 123 764
 - a) High risk <u>vessel</u>:3 570 (2.88%)
 - b) High risk <u>wellboat</u>: 478 (0.38%)

Proportion of correctly classified sites calculated SAV +ve sites = sensitivity SAV -ve sites = specificity

Veterinærinstituttet

Conclusions and limitations

- SAV-spread simulated with high sensitivity and specificity based on AIS-recorded wellboat movements
- Contribution to risk-based management
- Major limitations:
 - Doesn't say anything about how wellboat activity contributes to SAV spread
 - Monthly time steps
 - Lacked current screening-program data quality
 - Lacked input on e.g. hydrodynamics, vessel activities, site & vessel biosecurity, ownership

How to reduce future transmission risk?

- Restricted activities?
- Restricted geographical coverage?
- Improved biosecurity measures?
- Improved technology?

Wellboats are an essential part of the industry!

Need to determine how the risk may be mitigated and how this can be achieved in practice

Photo: Colourbox

