

 Veterinærinstituttet

UNIVERSITY OF LIVERPOOL

Food Safety & Animal Insight

Universidade do Minho

Annual Meeting 2015 Copenhagen 13 April

Agenda

Monday 13 April

CamCon

- 14.00 16.00 WP Committee Meetings
 - □ (WP3 and WP6: 5 minutes each, the rest: approx. 25 minutes each)
- 16.00 17.00 Break (not for Executive Board)
- 16.00 17.00 Meeting of the Executive Board
- 17.00 18.00 **General Assembly**
- 19.00 Dinner

Tuesday 14 April

Stakeholder Seminar

Participants

Partner	Name
1 - NVI	Merete Hofshagen
2 - DTU	Hanne Rosenquist, Birgitte Borck Høg, Birthe Hald, Helle Mølgaard Sommer, Maarten Nauta, Mathilde Hasseldam Josefsen, Jeffrey Hoorfar
3 - ULIV	Nicola Williams, Yvette Merga
4 - UU	Jaap Wagenaar
5 - Dianova	Mogens Madsen, Heidi Dahl
6 – CVI/LEI	Coen van Wagenberg, Peter Willemsen
8 - UMinho	Joana Azeredo, Carla Carvallo
9 – UNEW	Apopogies
10 - CReSA	Marta Cerdà-Cuéllar, Roser Dolz
12 - NVRI	Jacek Osek, Kinga Wieczorek, Edyta Denis, Beata Lachtara
Advisory Board/ Commission	Apologies

Participants

WP1 Committee Meeting

- Nicola Williams, ULIV
- Other participants

CamCon

□ All except DIA, CVI-LEI, UMinho

Task 1.1 Risk factors for Camp. colonization in broilers

Task leader: Birgitte Borck Høg, DTU

CamCon

Participants: NVI, ULIV, UU, CSA, NVRI

No	Deliverable	Status	Due		
1.1.1	Questionnaire and protocol for data collection agreed with all participants				
1.1.2	Report on broiler production across Europe (based on questionnaire)	\checkmark			
1.1.3	Research publication of risk factors for flock colonization including climatic conditions	√ ►*	April 2015		
$\sqrt{1}$ = deliver	$$ = delivered, \rightarrow = started, \rightarrow = not started				

* 1. Publication submitted April 15, 2. publication in draft, excpected April 15

Task 1.1 Risk factors for Camp. colonization in broilers

Activities

- Questionnaire data collected
- Retrospective Campylobacter status data collected from DK and NO
- Data from Denmark and Norway analysed risk factors identified
- Campylobacter data collected from 20 farms study in ES, NL, PL, UK
- Climate data collected (temperature, sunshine hours, precipitation)
- Datasets validated an merged (questionnaire, campylobacter status and climate data) and made ready for analyses
- Results published : Paper 1. submitted, Paper 2 in draft

Risk factors for Camp. colonization in broilers

Results – DK and NO

Variable	Effect on prevalence
Age of house	Newest house Iowest prevalence
Biosecurity (ante-room/barrier)	High biosecurity I owest prevalence
Country	Norwegian flocks 🔿 lower prev.
Density	High density - lower prevalence (only in Denmark)
Downtime	Low downtime Iower prevalence
Drinkers	Nipples without cups lower prevalence
No. of broiler houses	Lower no. of broiler houses 🔿 lower prevalence (only in Norway)
Bootdips	Bootdips at entrance

Risk factors for Camp. colonization in broilers

Results – All countries

Variable	Effect on prevalence
Country	Campylobacter positive flocks – descending order: PL, ES, UK, NL, DK and NO
Temperature	Increasing temperature increasing number of positive flocks
Age of house	Newest house lower prevalence
Biosecurity (ante-room/barrier)	Ante-room/barrier> lower prevalence
Biosecurity (designated tools)	Designated tools lower prevalence
Downtime	Low downtime lower prevalence
Drinkers (Bells, nipples with cups, nipples without cups)	Nipples without cups 🔿 lower prevalence

Task 1.1 Risk factors for Camp. colonization in broilers

Points for discussion

- Familiar risk factors
- A few new aspects
- What have we learned from this?
 - Questionnaires
 - Data issues
- How can we use these findings?

CamCon

A longit. study of broiler flocks in UK and Spain

- Task leader: Nicola Williams, ULIV
- Participants: UNEW, CS

No	Deliverable	Status	Due
1.2.1	Study protocol finalised	\checkmark	
1.2.2	Data analysis of first-year intensive flock sampling in Spain and the UK		Jun12 (exp. May 15)
1.2.3	Paper on two-year study in UK and Spain*		Feb14 (exp. May 15)
1.2.4	Identification of management intervention to minimize risk of colonization of broiler flocks		Feb14 (exp. May15)
$$ = delivered, \rightarrow = started, \rightarrow = not started			

* Full dataset from Spain yet to be analysed.

CamCon

A longitudinal study of broiler flocks in UK and Spain

- Recap-
- UK flock prevalence of 54% of flocks (n=109) (13-15 crops per farm) were positive for *Campylobacter* before slaughter, compared to 60% (n=63) flocks in Spain.
- The average age at which flocks become positive was 23 days, with the earliest detection of *Campylobacter* to date being at 9 days of age and 7 days of age for Spanish farms.
- No farm remained consistently negative throughout the study.
- Paths to the study house and anteroom rarely positive.

CamCon

A longitudinal study of broiler flocks in UK and Spain

- Activities/Results last year
 - UK: The data from the UK has been sent and analysed by Newcastle.
 - Manuscript in preparation.
 - SP: The data from Spain has been received at Newcastle, with analysis ongoing but delayed.
 - SP: manuscript in preparation.
- Problems
 - UK: Issues with data provided by the broiler companies, they do not record data in the same way, companies confounded by location and stocking density.
 - Spain: Data received March 2015- may not be time to analyse it before the final report submission.
- Points for discussion- data analysis

Task 1.3 Importance of flies in transmission of *Campylobacter* to broiler flocks

Task leader: Birthe Hald, DTU

CamCon

Participants: UNEW, ULIV, CSA

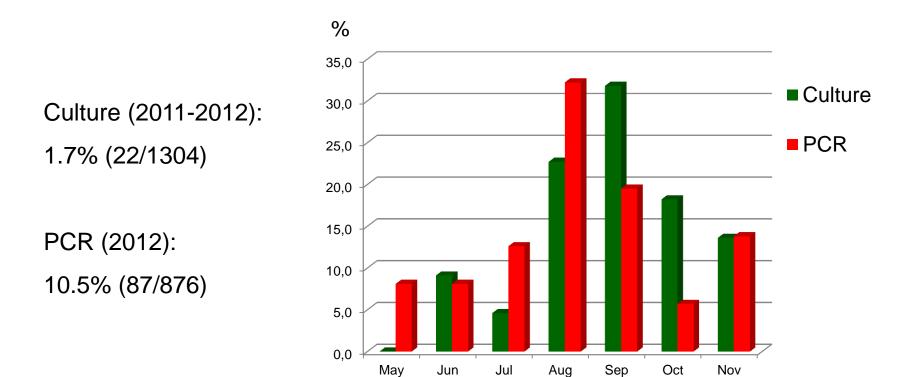
No	Deliverable	Status	Due
1.3.1	First-year report on flies	\checkmark	
1.3.2	Paper on the role of insects in colonization of broilers with Campylobacter in UK and Spain		Apr14 (exp. April15)
$\sqrt{-}$ delivered, $\rightarrow =$ started, $=$ not started			

Importance of flies in transmission of *Campylobacter* to broiler flocks

- Activities/Results last year 1.3.1. & 1.3.2
 - UK- Conclusions:
 - An estimate of 0.3% of the UK flies carried *Campylobacter* species
 - Flies shown to carry cattle and broiler associated STs, responsible for human disease.
 - Positive batches of flies contained a diversity of filth/dung and other Diptera
 - Anthomyiidae, Fanniidae, Calliphora, Phormia, Stomoxys, Anthomyiidae, Dolichopodidae, Fanniidae, Muscidae, Phaonia sp., Polietes lardarius, Psychodidae, Scatophagidae
 - High diversity of flies found on UK broiler farms (*Musca domestica* ~2.6% of flies caught).
 - Flies may spread *Campylobacter* from cattle to broiler farms.
 - Large numbers of flies were caught around broiler house ventilation inlets.
 - Manuscript submitted to Applied and Environmental Microbiology:
 - Alexandra Royden, Amy Wedley, Yvette Merga, Stephen Rushton, Birthe Hald, Tom Humphrey, Nicola J. Williams A Role for Flies (*Diptera*) in the Transmission of *Campylobacter* to Broilers?

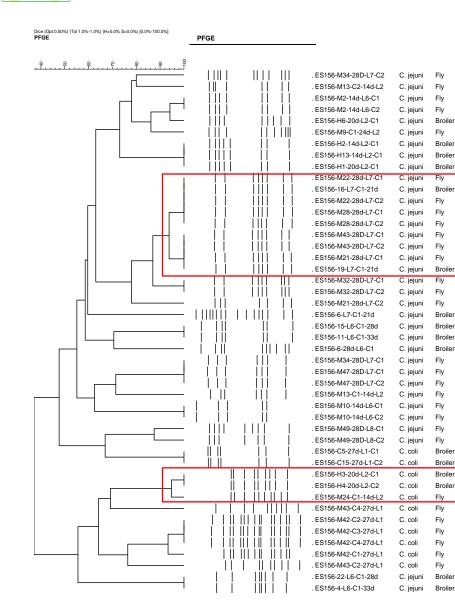
Task 1.3 Importance of flies in transmission of *Campylobacter* to broiler flocks

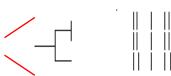
Activities/Results last year


- Spain- Conclusions 1.3.1.
- Musca domestica (house fly) was the most frequent (89.8%) fly species captured and the only species from which Campylobacter was isolated.
- 1.7% *M. domestica* (house fly) positive by culture.
- 10.5% of flies positive by PCR, including mainly *M. domestica*, but also *Ophyra* sp. (dump flies), *Calliphora* sp. (blowflies) and *Fannia canicularis*) (lesser house fly).
- Several broiler flocks became Campylobacter positive around the same time or just after detecting Campylobacter in the sampled flies.
- Similar PFGE profiles among *Campylobacter* isolates from flies and broilers during the same rearing cycle.
- Manuscript *in prep:* Saulo Urdaneta, Sandra Talavera, Marta Verdún, Nonito Pagès, Roser Dolz, Birthe Hald, Marta Cerdà-Cuéllar. Housefly (*Musca domestica*) as a vector for *Campylobacter jejuni* and *Campylobacter coli* in Spanish broiler farms.

Spain

CamCon


Peak of *Campylobacter* positive flies in August-September:



Same strains in flies and broilers (from same flock)

Most of the broiler flocks pos. at same time or just after flies pos.

.ES156-H3-20d-L2-C1	C.coli	Broiler
.ES156-H4-20d-L2-C2	C.coli	Broiler
.ES156-M24-C1-14d-L2	C. coli	Fly

Task 1.3 Importance of flies in transmission of *Campylobacter* to broiler flocks

Activities/Results last year

- <u>Spain.</u> Conclusions 1.3.2. Insect community.
- Overall 7003 insects captured in broiler house air inlet, 74.5% Diptera.
- The fly families known to carry Campylobacter comprised 0.14% of the Diptera's.

Importance of flies in transmission of *Campylobacter* to broiler flocks

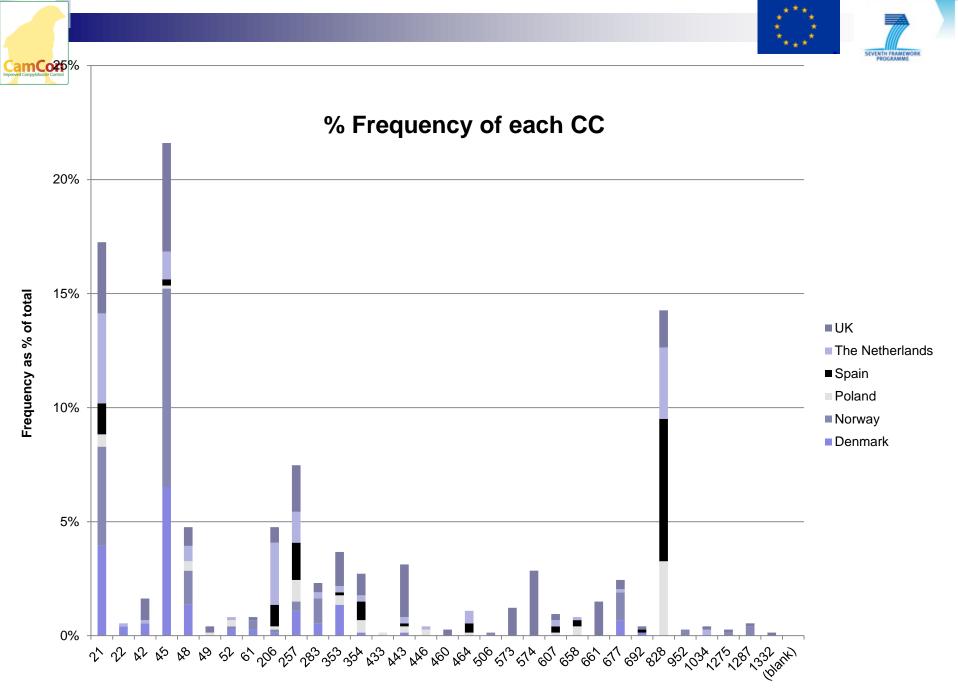
- Activities/Results last year
 - DK
 - A paper published:
 - Anders Kjærsgaard, Wolf U. Blanckenhorn, Cino Pertoldi, Volker Loeschcke, Christian Kaufmann, Birthe Hald, Nonito Pagès, Simon Bahrndorff. 2014. Plasticity in behavioural responses and resistance to temperature stress in *Musca domestica*. Animal Behaviour 99: 123-130.
 - Problems
 - None
 - Points for discussion
 - None

Task 1.4 Distribution of *Campylobacter* subtypes in EU broiler production

- Task leader: Frieda Jorgensen, Nicola Williams, ULIV
- Participants: NVI, DTU, UU, CSA, NVRI

No	Deliverable	Status	Due
1.4.1	Paper on Campylobacter sub-types in EU broiler production		Dec13 (exp. May15)
$\sqrt{=}$ delivered, $\rightarrow =$ started, $\rightarrow =$ not started			

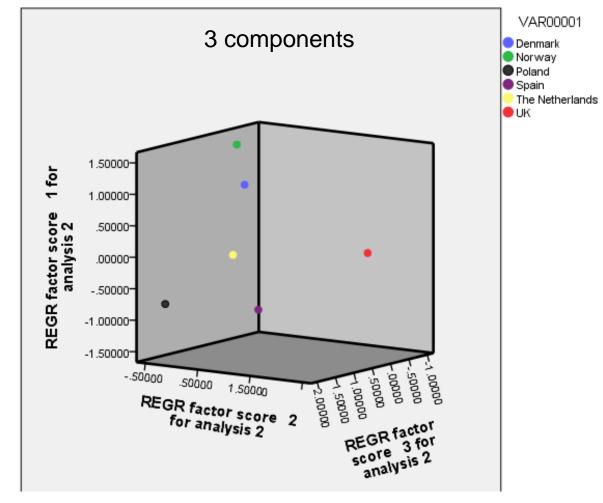
Task 1.4 Distribution of *Campylobacter* subtypes in EU broiler production


- Activities/Results last year
 - Final batches of sequencing completed.
 - Sequence analysis completed by YM.
 - Draft of paper started.
- Problems

- YM employed full time on another project, completing this work in spare time and longitudinal sampling late starting.
- Points for discussion
 - YM performed Principal Component Analysis on MLST data, following NL study (Smid *et al.* 2013).
 - Help/suggestions for further analysis welcome e.g. comparison of strain data such as housing type, management of birds?

Isolates

- A total of 1011 Campylobacter isolates were included in the analysis
- UK: 211 (2003-06)
- NL: 158 (2010-11)
- **ES:132 (2011-12)**
- PO: 157 (2011)
- NO: 168 (2004-08)
- DK: 185 (2007-08)
- 43 additional isolates were excluded from analysis due to being incomplete or having mixed C. jejuni/C. coli alleles
- 446 ST, 35 CC



2 components VAR00001 2.00000 Denmark Norway Poland Spain The Netherlands UK 1 for analysis 1 1.00000-REGR factor score .00000--1.00000* 1.00000 .00000 2.00000 -1.00000 REGR factor score 2 for analysis 1

CamCon Annual Meeting 2015

Results

CamCon Annual Meeting 2015

Task 1.5 Modelling in-house colonization of birds in relation to environment and bird welfare

- Task leader: Steven Rushton, UNEW
- Participants: ULIV

No	Deliverable	Status	Due	
1.5.1	Quantitative assessment of the relative significance of risk factors in the study countries		Aug13 (exp. May 15)	
1.5.2	A pathway model which defines the interactions between risk factors leading to colonization		Oct13 (exp. May 15)	
√= delivered	$\sqrt{=}$ delivered, \ge = started, $=$ not started			

Cam Task 1.5

Modelling in-house coloniation of birds in relation to environment and bird welfare- UK data

- Generalized Linear Models generated to identify potential factors associated with increased risk of *Campylobacter*
- For many variables there was extreme variability, or none at all.
- Variability also depended on the production company and geographical region.
- In effect, production system was highly heterogeneous between production company and region while often homogenous within.
- These phenomenon produced strong confounding effects that often made formal analyses impossible.

Com Task 1.5

Modelling in-house colonization of birds in relation to environment and bird welfare

Parameter	Estimate	Standard Error	Z-value	Pr(> z)
(Intercept)	-1.616	0.430	-3.762	0.000
Adjacent Building Status (Positive)	1.685	0.365	4.621	0.000
Internal Air Temperature	0.273	0.162	1.688	0.091
External Air temperature	0.443	0.174	2.553	0.011
Stocking Density	1.153	0.405	2.845	0.004
Average Down-time	-0.555	0.198	-2.801	0.005
Drinking Water Providers (cups)	0.748	0.366	2.043	0.041

• $R^2 = 0.481$

Task 1.5 Modelling in-house colonization of birds in relation to environment and bird welfare- UK

 Estimates describe change in baseline probability of a flock-cycle becoming colonized with Campyobacter.

- Total value of all estimates is obtained and baseline probability of colonization is calculated.
- Cumulative probability that a given flock-cycle is colonization by Campylobacter varies according to:
 - Welfare system used to produced birds (low or high stocking density)
 - Whether adjacent farm production buildings are also colonized by Campylobacter (farm-level biosecurity breach).

Task 1.5 Modelling in-house colonization of birds in relation to environment and bird welfare- UK

- Baseline probability of colonization generated from estimates from the model makes the following assumptions:
 - I. Flock-cycle produced at high density and adjacent production facilities on study farm have also been colonized by *Campylobacter* (Pr = 0.978).
 - II. Flock-cycle produced at low density and adjacent production facilities on study farm have also been colonized by *Campylobacter* (Pr = 0.842).
 - III. Flock-cycle produced at high density and adjacent production facilities on study farm have NOT been colonized by *Campylobacter* (Pr = 0.626).
 - IV. Flock-cycle produced at low density and adjacent production facilities on study farm have NOT been colonized by *Campylobacter* (Pr = 0.241).

Task 1.5 Modelling in-house colonization of birds in relation to environment and bird welfare-UK

- Differences in probability of colonization reflect the importance of welfare system, where birds at higher stocking density are more susceptible to infection.
- In addition, maintaining biosecurity within the farm production environment is also important and may mitigate the risk of colonization by *Campylobacter*.

Modelling in-house colonization of birds in relation to environment and bird welfare-UK

- Problems
 - Data presented late
 - Questionnaire results of variable quality, despite huge efforts by collaborators to generate information.
 - Major differences in recording and reporting of bird health data between companies defeated attempts to analyse data.

WP2 Committee Meeting

Jaap Wagenaar, UU

CamCon

Other participants: all except NVI, DIA, UNEW, NVRI

Task 2.1 Fly screens add-on to biosecurity

- Task leader: Birthe Hald, DTU
- Participants: ULIV, CSA

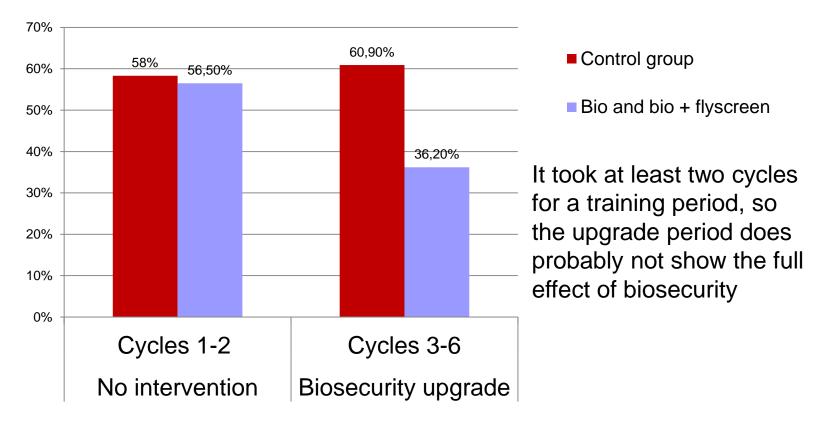
No	Deliverable	Status	Due
2.1.1	List of study farms and control farms to be visited		
2.1.2	List of farms consenting to participate	\checkmark	
2.1.3	Report for each study farm to approve biosecurity level and plan for mounting of fly screens	\checkmark	
2.1.4	Fly screens delivered on farms		
2.1.5	Logbooks filled in and collected – 18 farm study		Dec14
2.1.6	Database with Campylobacter results of farms in T2.1		(exp Apr15) <mark>Nov15</mark>
2.1.7	Paper on the effect of fly control in UK and Spain		Feb15 (exp. Apr16)
= deliver	ed, ►= started, —= not started		

Task 2.1 Fly screens add-on to biosecurity

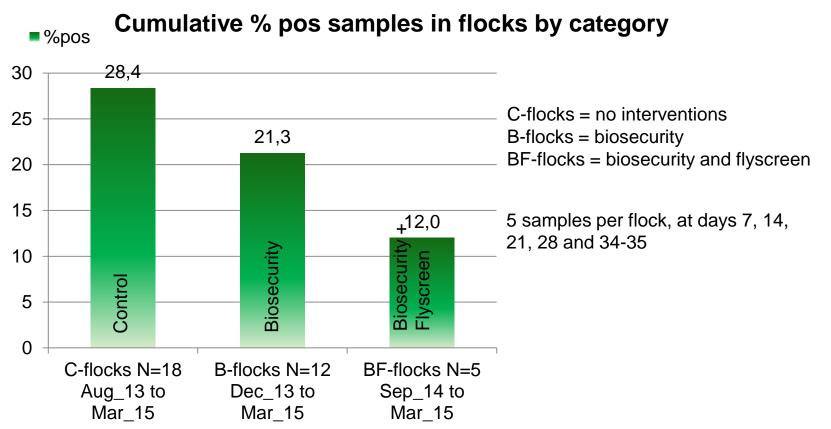
- Activities/Results last year
- UK

- 'DTU' has forwarded all data from the fly screen study in Northern Ireland to the project leader of the Defra project to be integrated with the data from the Defra study.
- No results yet

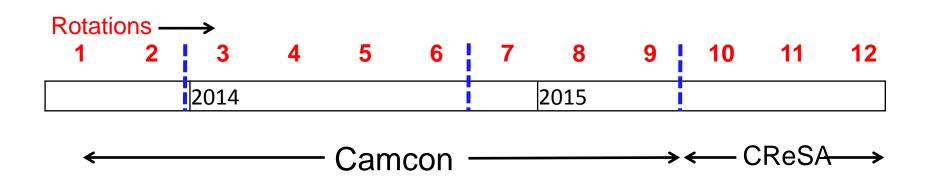
Activities/Results last year


- Spain The 18-farm study
 - Midway evaluation of the effect of upgraded biosecurity procedures of the 18-farm study. Effect approved by April 14.
 - Fly screens established during summer/autumn (July – October 2014) on 5 houses (i.e. by Oct2014 total 7 houses running on 5 farms) comprising the 'BIO + Flyscreen' group.

Preliminary results per April 2014


CamCon

18-farm study Biosecurity upgrade, flock prevalence at day 34


Preliminary results by April 2015

Activities/Results last year

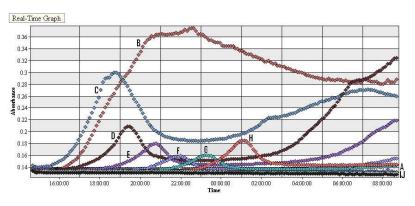
- Spain The 18-farm study
 - The additional effect of flyscreen can not be expected to show until the summer/autumn season 2015, i. e. after the CamCon project period.

Problems

- There are deliverables that will be incomplete by end date of the project.
 - D. 2.1.5 Logbooks filled in and collected 18 farm study
 - D. 2.1.6 Database with Campylobacter results of farms in T2.1
- Should those Deliverables be uploaded at end of CamCon, or after the project period by Dec 2015?
- Points for discussion
 - The data that are achieved by CReSA from May15 to Dec15, how will they relate to the CamCon project ?

- Task leader: Peter Willemsen, CVI-LEI
- Participants: UMinho, DTU

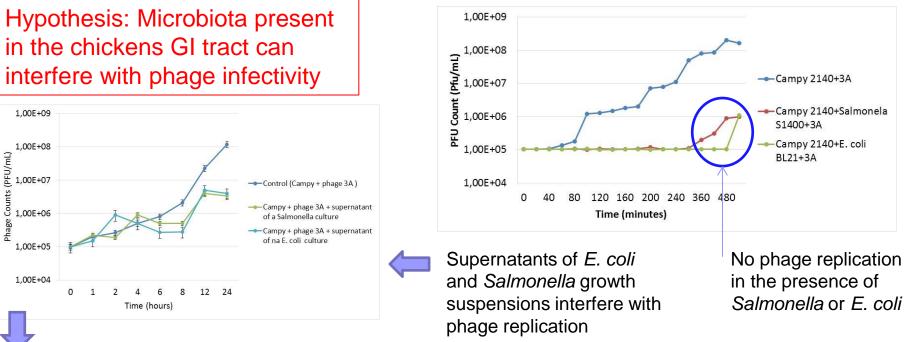
No	Deliverable	Status	Due			
2.2.1	Collection of phages to be used for therapy to control Campylobacter	\checkmark	Apr12			
2.2.2	Paper on the efficacy and effectiveness of the use of phages to combat Campylobacter in field trials		Apr14 (exp. ???)			
2.2.3	Paper on the effectiveness of phage therapy		Apr14 (exp. 2015)			
= delivere	$$ = delivered, \rightarrow = started, \rightarrow = not started					


Task 2.2

Phage therapy

- Activities/Results last year
 - Focus on phage inactivation/ phage resistance
- Problems
 - Trials show no reduction of Campylobacter. Large variation in data. Difficult to publish.
- Points for discussion
 - Decided to change deliverables (publication):
 - in stead of general review on phage therapy: a review on Campylobacter phage therapy (2015)
 - results CamCon trials, dependent on final experiments. Still not fit for publication.

- Activities/Results last year
 - Focus on phage inactivation/ phage resistance
 - Comparison Parent (susceptible) with Daughter (resistant) strain after *in vitro* induction of phage resistance


	ome Cal	our Sidvernes					Cardenandaria Antonio Cardenandaria		
1.1	1	ė.		plose: -	0	— 🖷 Page Left 📄 Page Right 👍 Juno Io Bos			
Open			Tag Variants	States	0	Prev Peakere ** Next Peakere Prev Rem ** Prev Texe	1 Bron Bases 1 R5 Centre		
Assembly .	Peebreo Data	Duynes	Visale		Aduat	Navigate	Overtain		
al of t			0.114						
		<i>M</i> .			Distance of the local distance of the				
for 1				45.275 total ready					
8g.	(Length)	Reals	Pealures						
					1.192.001.01.180.805			***************************************	********
					100000000000000000000000000000000000000				
					100000000000000000000000000000000000000				
					100000000000000000000000000000000000000				
					1054245054844				
					100000000000000000000000000000000000000				
					100000000000000000000000000000000000000				
					100000000000000000000000000000000000000				
					1002220000000000				
					100000000000000000000000000000000000000				
					100000000000000000000000000000000000000				
					100000000000000000000000000000000000000				
					100000000000000000000000000000000000000				
					1000000000000000				
					100222000222				
					100000000000000000000000000000000000000				
					100000000000000				

- Activities/Results last year
 - Focus on phage inactivation/ phage resistance
 - No inactivation of cocktail phages:
 - 4 < pH > 80.1% DOC

- Activities/Results last year
 - Focus on phage inactivation/ phage resistance
 - Quorum sensing/other gut microbiota

E. Coli and Salmonella metabolites inhibits phage replication – Quorum sensing?

- Activities/Results last year
 - Focus on phage inactivation/ phage resistance
 - Conclusion:

Both phage inactivation and (acquired) phage resistance occur, but no mechanism or gene involved has been identified yet.

- Task leader: Jaap Wagenaar, UU
- Participants: CVI-LEI

No	Deliverable	Status	Due
2.3.1	Identification of immune response against <i>C. jejuni</i> subunit vaccines	\checkmark	
2.3.2	Identification of immune response against <i>C. jejuni</i> whole cell vaccines	\checkmark	
2.3.3	Protection against <i>C. jejuni</i> challenge after vaccination with <i>C. jejuni</i> subunit vaccines		Under internal review
2.3.4	Protection against <i>C. jejuni</i> challenge after vaccination with <i>C. jejuni</i> killed whole cell vaccines		Under internal review
= delivere	d, ►= started, —= not started		•

CamCon

Activities/Results during the project

- Over the years we performed several *in ovo* vaccination/challenge experiments with recombinant proteins with combined antigen-adjuvant properties (manipulated flagellin). Recombinants activated the TLR5 pathway (in contrast to wildtype *Campylobacter*).
- TLR5 activation was possible *in ovo* (upregulation of cytokines after vaccination
- Problems
 - Antibody responses were observed; the hypothesis that glycosylation of the antigen would be essential for an effective immune response became stronger.

- Points for discussion
 - The production of glycosylated antigens appeared to be the limiting factor (must be IN Campylobacter as this is the only species that produces glycosylated proteins).

Conclusions from the experiments

- In ovo vaccination with protein-based vaccines induces antibody responses
- Antibody response is dose-dependent
- No protection upon *C. jejuni* challenge
- Possible reasons:

- Glycosylated flagellin needed?
- Antibody titer not sufficient?
- Dose still too low?

amCon

- Activities/Results last year Attempts to increase the production of glycosylated antigens in *Campylobacter* (on the chromosome instead of plasmid).
- Problems

Stability of the glycosylated strain and products

- Points for discussion
 - The current focus is on improved production and use of glycosylated recombinant vaccine antigen with cloning of *C. jejuni* flagellar chaperones-genes in the production strain

WP3 Committee Meeting

Mathilde Josefsen, DTU

CamCon

Other participants: NVRI

Task 3.1 Development of methods of quantification of *Campylobacter* in air

- Task leader: Mathilde Josefsen, DTU
- Participants: DTU

No	Deliverable	Status	Due
3.1.1	Establishment of methods of quantification of airborne Campylobacter	\checkmark	
3.1.2	Definition of level of sensitivity		
3.1.3	Publication on quantities of airborne Campylobacter		
3.1.4	Identification of a suitable semi-automated technology allowing semi-continuous monitoring of airborne Campylobacter	\checkmark	
= delivere	d, ►= started, —= not started	1	

Task 3.2 Feasibility of real-time monitoring of *Campylobacter* in broiler flocks

- Task leader: Mathilde Josefsen, DTU
- Participants: NVRI

No	Deliverable	Status	Due
3.2.1	Knowledge of the airborne particle size distribution under various farming conditions	\checkmark	
3.2.2	Knowledge of the ratio of airborne particles and Campylobacter under various farming conditions	\checkmark	
= delivere	d, ►= started, —= not started		

Task 3.3 Report on future research needs

Task leader: Mathilde Josefsen, DTU

Participants: DTU

No	Deliverable	Status	Due		
3.3.1	Report on future research needs regarding diagnostic tools to detect Campylobacter in primary poultry production	\checkmark			
$\sqrt{1}$ = delivered	$$ = delivered, \rightarrow = started, \rightarrow = not started				

WP4 Committee Meeting

Maarten Nauta, DTU

CamCon

 Other participants: all except DIA, UMinho, UNEW

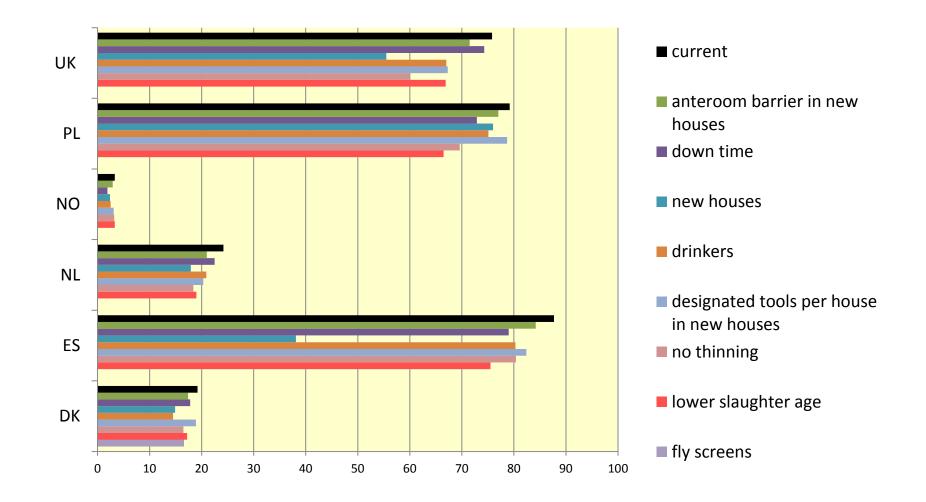
Task 4.1 Risk assessment

CamCon

- Task leader: Maarten Nauta, DTU
- Participants: DTU

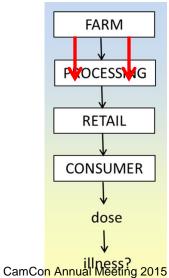
No	Deliverable	Status	Due			
4.1.1	Research paper on the QRA model		Feb15 (exp. Apr15)			
$$ = delivered, \rightarrow = started, \rightarrow = not started						

We will deliver TWO Research papers!!



Task 4.1 Risk assessment (1)

- Activities/Results last year
 - Effective interventions defined on the basis of significant risk factors (WP1)
 - Three additional interventions included:
 - Ban on thinning
 - Reduction of slaughter age to 35 days
 - Using EFSA analyses
 - Application of fly screens (Denmark)
 - Bahrndorff et al. paper
 - Effects of interventions on flock prevalences assessed



Task 4.1 Risk assessment (2)

- Activities/Results last year
 - Assessment of effect of interventions reducing the concentration of Campylobacter in intestinal contents
 - No data from WP2 on vaccines and phages
 - Data on concentrations in caeca from SP, UK, NO, DK, NL
 - EU Baseline data on neck skins
 - Comparison of two approaches
 - Linear regression caeca skin
 - Risk assessment model (CARMA, NL)

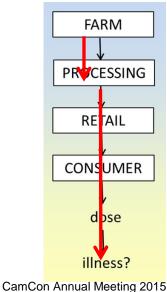
Table 2. Country data, caecal concentrations

	mean, m (log cfu/g)	sd of means (between), s _b (log cfu/g)	mean sd (within), s _w (log cfu/g)
Denmark	7.25	0.80	0.82
Norway	7.28	1.41	1.06
UK	7.18	1.00	0.80
Spain	6.55	0.85	0.8
Netherlands	6.94	1.37	1.18

Only positive flocks

CamCon

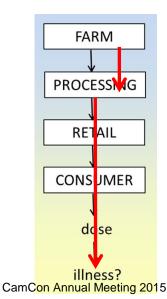
Not necessarily representative for the country!


Regression model

amCon

Based on DK data (25 samples of 3x5 flocks), (Boysen et al. 2015)

$$\log C_{skin} = 0.70 \log C_{fec} - 2.5 (+-0.36)$$


- Caecal count data form Camcon countries
- Risk assessment model C_{skin} Risk
- Other data sets predict no or different regression lines
 - The slope is crucial

- Risk assessment model (Nauta et al 2007)
 - Inputs
 - Caecal count data Camcon countries
 - Nauta et al. 2007 inputs and assumptions
 - Modified last part of the modelTo allow comparison

What is the effect of reduction in C_{fec} ?

amCon

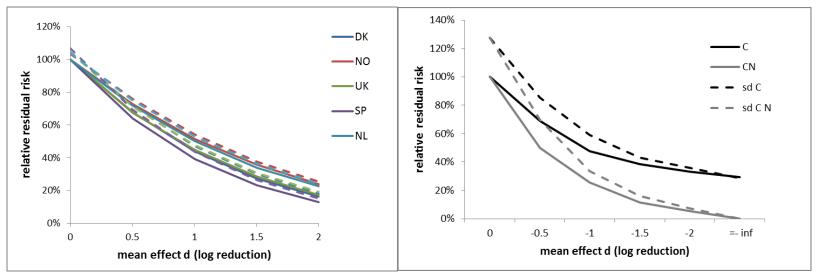


Figure: Relative residual risks after reduction of the mean Campylobacter concentration in intestinal content of broilers by d log, estimated by analysis of a linear regression model using data from five countries involved in CamCon (left) and a risk assessment model (right).

Effect of 1 to 2 log reduction is large Caecal count data are not so important Not one generic model, no "rule of thumb"

Task 4.1 Risk assessment: main results

- 20 farm study WP1 results translated in estimates of effects of interventions
 - No single intervention solves the problem
 - Differences between countries
- Reducing caecal concentrations may be effective
 - Difficult to predict HOW effective
 - Linear regression is too simple, Risk assessment is too complex

Task 4.2 Data collection and compilation

- Task leader: Hanne Rosenquist, DTU
- Participants: CVI-LEI, NVI, ULIV, UU, CSA, NVRI

No	Deliverable	Status	Due				
4.2.1	Report on data collected for risk assessment and economics		Feb15 (exp. Apr15)				
$\sqrt{1}$ = delivere	$$ = delivered, \rightarrow = started, \rightarrow = not started						

Task 4.2 Data collection and compilation

- Activities/Results last year
 - We have collected and compiled information for risk assessment and economics. This information is now available in a report (Deliverable 4.2.1) which includes:
 - Results of a literature survey on *Campylobacter* in the broiler chain (2007-2013).
 - Results of analyzing the correlation between Campylobacter in caeca and meat on data provided by partners in Norway, the UK, Spain and Poland.
 - Results of analyzing the impact of interventions (thinning, slaughter age, fly screens) that could not be extracted from the risk factor study in CamCon WP1.
 - Costs of interventions.
- Problems

- None
- Points for discussion
 - None

Task 4.3 Economics

CamCon

Task leader: Peter van Horne, CVI-LEI

Participants: CVI-LEI

No	Deliverable	Status	Due		
4.3.1	Research paper on the cost-effectiveness of interventions in different regions in Europe		Apr15		
$$ = delivered, \rightarrow = started, \rightarrow = not started					

Task 4.3 Economics

- Activities/Results last year
 - Collection on general economic data in countries and verification is finished
 - Definitions of intervention measures made
 - Collection of specific economic data
 - Final draft of research paper on intervention costs
- Problems
 - None
- Points for discussion
 - None

- Farm level calculation model
- Economic-engineering approach: combining detailed engineering and costs data in a quantitative model of the production process
- Typical farm in 2009
- Considering differences in:
 - Economic factors (interest, labour costs, electricity and water prices)
 - Technical and economic farm performance

Task 4.3 Economics: main results

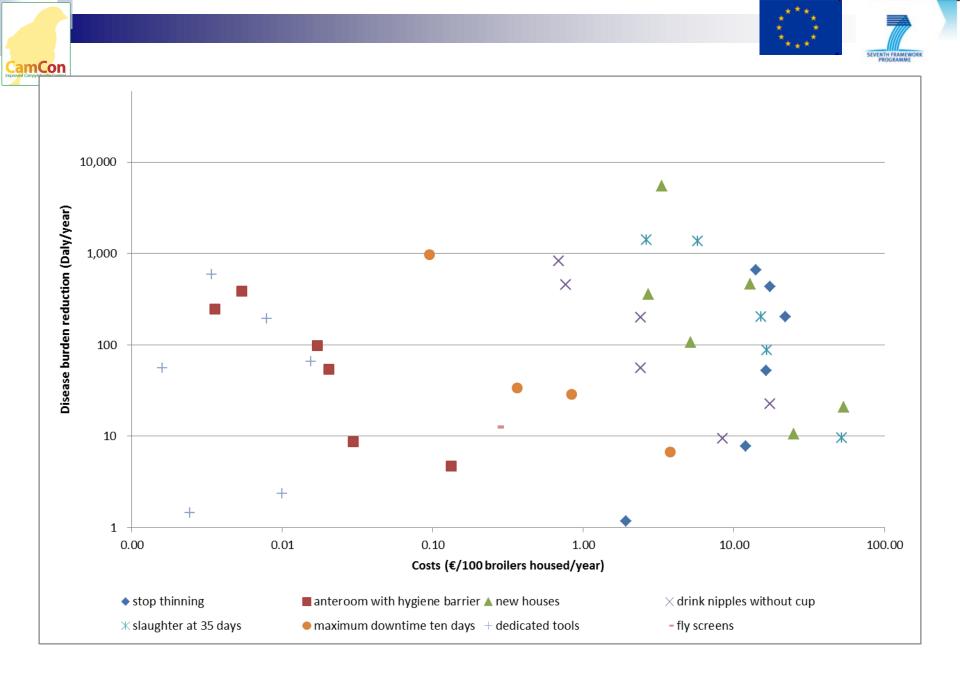
- Costs differ substantially between countries
- Cheapest interventions:
 - Anteroom with hygiene barrier
 - Dedicated tools
 - Fly screen
- Most expensive interventions:
 - New houses
 - Slaughter at 35 days
 - Discontinue thinning
 - Drink nipples without cup
- Maximum downtime ten days: very different between countries

Task 4.4 Cost-effectiveness on interventions at farm and comparison with interventions post farm

- Task leader: Maarten Nauta, DTU
- Participants: CVI-LEI

No	Deliverable	Status	Due	
4.4.1	Research paper on integration of risk assessment and economy (cost effectiveness)		Feb15 (exp. Apr15)	
$$ = delivered, \ge = started, $=$ not started				

Task 4.4 Cost-effectiveness on interventions at farm and comparison with interventions post farm


- Activities/Results last year
 - Collection of human health data related to campylobacter
 - Collection import/export data of broilers and their meat
 - Final draft of research paper on cost-effectiveness
- Problems

- None
- Points for discussion
 - None

- Farm level calculation model
- Economic-engineering approach: combining detailed engineering and costs data in a quantitative model of the production process
- Typical farm in 2009
- Considering differences in:
 - Economic factors (interest, labour costs, electricity and water prices)
 - Technical and economic farm performance
 - Effectiveness interventions
 - Import/export
 - Campylobacter disease burden

Task 4.4 Cost-effectiveness: main results

- Interventions with low costs/DALY:
 - Anteroom with hygiene barrier
 - Dedicated tools
- Interventions with high costs/DALY:
 - Discontinue thinning
 - New houses
 - Slaughter at 35 days
 - Drink nipples without cup
- Interventions with medium costs/DALY:
 - Fly screens
 - Maximum downtime ten days

WP5 Committee Meeting

Mogens Madsen, DIA

CamCon

 Other participants: all except CVI-LEI, UMinho, UNEW

Task 5.1 Best Practice Manual for production of Campfree chickens

Task leader: Mogens Madsen, DIA

CamCon

Participants: all other participants in WP5

No	Deliverable	Status	Due	
5.1.1	Best Practice Manual	\checkmark		
$$ = delivered, \blacktriangleright = started, —= not started				

Task 5.1 Best Practice Manual for production of Campfree chickens

- Activities/Results last year
 - Work on a basic Best Practice Manual in Spain (WP2) has been combined with CamCon updated project knowledge
 - The CamCon Best Practice Manual has been completed and distributed to project partners (D5.1.1)
 - The CamCon Best Practice Manual will be distributed to external stakeholders at the CPH Hilton seminar, and in hard copies by mail afterwards
- Problems

- Time restraints have not allowed for a draft-and-comment phase from all CamCon partners
- Points for discussion
 - Is this a problem?

Task 5.2 Specific targeted learning programmes for proficiency in implementing the "BPM for production of Camp-free chickens"

Task leader: Mogens Madsen, DIA

amCon

Participants: DTU, all other participants in WP5

No	Deliverable	Status	Due
5.2.1	Plan for distribution of the final E-learning product	\checkmark	
5.2.2	E-learning programme	\checkmark	
$$ = delivered, \ge = started, $=$ not started			

Task 5.2

CamCon

Specific targeted learning programmes for proficiency in implementing the "BPM for production of Camp-free chickens"

- Activities/Results last year
 - A distribution plan for CamCon educational products has been completed (D5.2.1)
 - An e-learning programme for broiler farm owners and staff on 'Campylobacter and biosecurity' has been completed (D5.2.2)
 - The e-learning programme will be demonstrated at the CPH Hilton seminar, and will be available at <u>www.camcon-eu.net</u>
- Problems
 - Change of subcontractor delayed the production
- Points for discussion
 - None

Task 5.3 Voluntary Certification Programme

Task leader: Mogens Madsen, DIA

CamCon

Participants: all other participants in WP5

No	Deliverable	Status	Due	
5.3.1	Voluntary Certification Programme	\checkmark		
$$ = delivered, \rightarrow = started, \rightarrow = not started				

Task 5.3 Voluntary Certification Programme

- Activities/Results last year
 - A CamCon Draft CertificationProgramme has been completed and distributed to project partners (D5.3.1)
 - The CamCon Draft CertificationProgramme will be distributed to external stakeholders at the CPH Hilton seminar, and in hard copies by mail afterwards
- Problems

- Time restraints have not allowed for a draft-andcomment phase from all CamCon partners
- Points for discussion
 - Is this a problem?

WP6 Committee Meeting

Merete Hofshagen, NVI

Other participants: all

Task 6.1 – 6.3 CA, Management team, Web site

- Task leader: Merete Hofshagen, NVI
- Participants: all

No	Deliverable	Status	Due
6.1.1	The Consortium Agreement signed by all participants	\checkmark	
6.2.1	Management support team appointed	\checkmark	
6.3.1	The Project web site established	\checkmark	
$$ = delivered, \blacktriangleright = started, —= not started			

Task 6.1 – 6.3 CA, Management team, Web site

- Activities/Results last year
 - According to plan
 - Must finalize reports after project ends
- Problems

- None
- Points for discussion
 - None

Task 6.4 Establish and maintain the Communication and Dissemination Plan

- Task leader: Merete Hofshagen, NVI
- Participants: all

No	Deliverable	Status	Due
6.4.1	Plan for the use and dissemination of foreground presented	\checkmark	
$$ = delivered, \rightarrow = started, \rightarrow = not started			

Task 6.4 Establish and maintain the Communication and Dissemination Plan

- Activities/Results last year
 - According to plan
 - Must finalize reports after project ends
- Problems

- None
- Points for discussion
 - None

Task 6.5 – 6.6 Meetings and reports

- Task leader: Merete Hofshagen, NVI
- Participants: all

No	Deliverable	Status	Due
6.5.1	Reports of project's meetings	$ \begin{array}{c} \sqrt{,} \ \sqrt{,} \\ \sqrt{,} \ \sqrt{,} \ \end{array} $	
			Apr15
6.6.1	Regular reports to the European Commission	$\sqrt{,} $	
			Apr15
6.6.2	Report on awareness and wider societal implications		Apr15
$$ = delivered, \rightarrow = started, \rightarrow = not started			

Task 6.5 – 6.6 Meetings and reports

- Activities/Results last year
 - Annual and Quarterly Meetings
 - Last Periodic Report and Final Report to COM
 - Started, but will be finalized in May/June
 - Depending on WP-leaders, Task leaders and Institutions
 - Need all Deliverables before 30 April!
 - NB economical reporting from Participants!!
 - Start asking economy department NOW! Audits!! DTU/ULIV
 - Lars will send email soon
- Problems

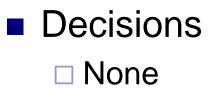
- None
- Points for discussion
 - None

Executive Board Meeting

Discussions

amCon

- The Executive Board was in general pleased with the project!
- □ Reports deadlines!


DecisionsNone

General Assembly

Meeting tomorrow

- □ Discussion Tables which?
- □ Should we send out/publish slides? NO

